
XFS Clarifications for
Device Class Interfaces

Revision 3.00.39
July 2023
5Introduction

6Generic Clarifications

6Backward compatibility

6Clarifications for lpszExtra in all commands and across all device classes

6Architectural and Implementation Issues

7Clarifications for Synchronous Functions

7Closing a Session

8Configuration Information

12Clarifications for description of ShareMapAddr

12Notification Mechanisms — Registering for Events

12Application Processes, Threads and Blocking Functions

15Application Programming Interface (API) Functions

15Clarifications for WFSOpen/WFSAsyncOpen

16Clarifications for WFSStartUp

16Clarifications for WFPOpen

17Service Provider Interface (SPI) Functions

17Configuration Functions

17Clarifications for WFMCloseKey

18Clarifications for WFMCreateKey

18Clarifications for WFMDeleteKey

18Clarifications for WFMDeleteValue

18Clarifications for WFMEnumKey

18Clarifications for WFMEnumValue

18Clarifications for WFMOpenKey

19Clarifications for WFMQueryValue

19Clarifications for WFMSetValue

19Data Structures

19Clarifications for WFSRESULT

19Messages

19Clarifications for Event Messages

19Clarifications for WFS_SYSE_DEVICE_STATUS

20Clarifications for WFS_SYSE_UNDELIVERABLE_MSG

20Clarifications for WFS_SYSE_APP_DISCONNECT

20Clarifications for WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR and WFS_SYSE_USER_ERROR

21Clarifications for the meaning and use of Physical Service Name

22Clarifications for lpszLogicalName and lpszPhysicalName in section 10.6 (Hardware and Software Errors):

22Clarifications for use of the dwAction field in section 10.6 (Hardware and Software Errors):

22C_Header file

22Device Classes

22Clarifications for Device State reporting

23Printers

23Clarifications for Section Banking Printer Types

23Clarifications for WFS_INF_PTR_CAPABILITIES

23Clarifications for WFS_INF_PTR_STATUS

24Clarifications for WFS_INF_PTR_QUERY_FORM

24Clarifications for WFS_INF_PTR_QUERY_MEDIA

24Clarifications for WFS_INF_PTR_QUERY_FIELD

24Clarifications for WFS_CMD_PTR_CONTROL_MEDIA

25Clarifications for WFS_CMD_PTR_PRINTFORM

25Clarifications for WFS_CMD_PTR_READ_FORM

25Clarifications for WFS_CMD_PTR_RETRACT_MEDIA

26Clarifications for WFS_CMD_PTR_DISPENSE_PAPER

26Clarifications for WFS_CMD_PTR_RESET

26Clarifications for WFS_EXEE_PTR_NOMEDIA

27Clarifications for WFS_SRVE_PTR_MEDIATAKEN

27Clarifications for Definition Syntax

27Clarifications for Form Definition

28Clarifications for Subform Definition

28Clarifications for Field Definition

28Clarifications for Frame Definition

28Identification Card Units

28Clarifications for WFS_CMD_IDC_READ_TRACK

29Clarifications for WFS_CMD_IDC_RETAIN_CARD

29Clarifications for WFS_CMD_IDC_READ_RAW_DATA

30Clarifications for WFS_CMD_IDC_RESET

30Clarifications for WFS_CMD_IDC_CHIP_POWER

31Clarifications for WFS_SRVE_IDC_MEDIAREMOVED

31Clarifications for WFS_SRVE_IDC_MEDIADETECTED

31Clarifications for Form Description

32Clarifications for guidance on the roles and responsibilities of an application in EMV:

32Clarifications for the C_Header file

32Cash Dispensers

33Clarifications for Section Cash Dispensers

33Clarifications for WFS_INF_CDM_STATUS

33Clarifications for WFS_INF_CDM_CAPABILITIES

34Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

37Clarifications for WFS_INF_CDM_MIX_TYPES

38Clarifications for WFS_INF_CDM_PRESENT_STATUS

38Clarifications for WFS_CMD_CDM_DENOMINATE

39Clarifications for WFS_CMD_CDM_DISPENSE

39Clarifications for WFS_CMD_CDM_COUNT

40Clarifications for WFS_CMD_CDM_PRESENT

40Clarifications for WFS_CMD_CDM_REJECT

40Clarifications for WFS_CMD_CDM_RETRACT

41Clarifications for WFS_CMD_CDM_SET_CASH_UNIT_INFO

41Clarifications for WFS_CMD_CDM_START_EXCHANGE

42Clarifications for WFS_CMD_CDM_END_EXCHANGE

43Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

43Clarifications for WFS_CMD_CDM_SET_MIXTABLE

43Clarifications for WFS_CMD_CDM_RESET

44Clarifications for WFS_CMD_CDM_TEST_CASH_UNITS

44Clarifications for WFS_USRE_CDM_CASHUNITTHRESHOLD

45Clarifications for WFS_SRVE_CDM_CASHUNITINFOCHANGED

45Clarifications for WFS_EXEE_CDM_CASHUNITERROR

45Clarifications for WFS_SRVE_CDM_ITEMSTAKEN

45Clarifications for WFS_SRVE_CDM_COUNTS_CHANGED

45Clarifications for WFS_EXEE_CDM_NOTEERROR

46Clarifications for Rules for Cash Unit Exchange

46Clarifications for C-Header File

46Personal Identification Number Keypads (PIN Pads)

46Clarifications for Section 2. Personal Identification Number Keypads

47Clarifications for Section 3. References

47Clarifications for WFS_INF_PIN_CAPABILITIES

48Clarifications for WFS_INF_PIN_FUNCKEY_DETAIL

49Clarifications for WFS_INF_PIN_KEY_DETAIL_EX

49Clarifications for WFS_CMD_PIN_CRYPT

49Clarifications for WFS_CMD_PIN_IMPORT_KEY

50Clarifications for WFS_CMD_PIN_DERIVE_KEY

50Clarifications for WFS_CMD_PIN_GET_PIN

51Clarifications for WFS_CMD_PIN_LOCAL_DES

52Clarifications for WFS_CMD_PIN_CREATE_OFFSET

53Clarifications for WFS_CMD_PIN_PRESENT_IDC

53Clarifications for WFS_CMD_PIN_GET_PINBLOCK

54Clarifications for WFS_CMD_PIN_GET_DATA

55Clarifications for WFS_CMD_PIN_LOCAL_VISA

55Clarifications for WFS_CMD_PIN_LOCAL_BANKSYS

55Clarifications for WFS_CMD_PIN_IMPORT_KEY_EX

56Clarifications for WFS_CMD_PIN_ IMPORT_RSA_PUBLIC_KEY

56Clarifications for WFS_CMD_PIN_ IMPORT_RSA_SIGNED_DES_KEY

56Clarifications for WFS_CMD_PIN_ IMPORT_RSA_ENCIPHERED_PKCS7_KEY

57Clarifications for WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY

57Clarifications for WFS_EXEE_PIN_KEY

57Clarifications for RSA Secure Key Exchange using Digital Signatures

57Clarifications for C-Header File

58Check Reader/Scanner

58Clarifications for WFS_CMD_CHK_RESET

58Depository Unit

58Clarifications for WFS_CMD_DEP_ENTRY

59Clarifications for WFS_CMD_DEP_RETRACT

59Text Terminal Unit

59Clarifications for WFS_INF_TTU_STATUS

59Clarifications for WFS_INF_TTU_CAPABILITIES

59Clarifications for WFS_CMD_TTU_WRITE_FORM

59Clarifications for WFS_CMD_TTU_READ_FORM

60Clarifications for WFS_CMD_TTU_SET_LED

60Clarifications for WFS_CMD_TTU_SET_RESOLUTION

60Clarifications for WFS_CMD_TTU_RESET

60Clarifications for Definition Syntax

60Clarifications for Form Definition

61Clarifications for Field Definition

61Sensors and Indicators Units

61Clarifications for WFS_INF_SIU_STATUS

62Clarifications for WFS_INF_SIU_CAPABILITIES

62Clarifications for WFS_CMD_SIU_SET_AUXILIARY

64Vendor Dependent Mode

64Clarifications for flow: VDM Entry triggered by XFS Application

65Clarifications for flow: VDM Entry triggered by Vendor Dependent Switch

66Clarifications for flow: VDM Exit triggered by XFS Application

67Clarifications for flow: VDM Exit triggered by Vendor Dependent Switch

68Clarifications for WFS_CMD_VDM_ENTER_MODE_ACK

68Clarifications for WFS_CMD_VDM_EXIT_MODE_ACK

68Cameras

68Clarifications for WFS_INF_CAM_STATUS

68Alarms

68No clarifications

68Card Embossing

68Clarifications for WFS_CMD_CEU_RESET

68Cash In Module

69Clarifications for Section Cash-In Module

69Clarifications for WFS_INF_CIM_STATUS

69Clarifications for WFS_INF_CIM_CAPABILITIES

70Clarifications for WFS_INF_CIM_CASH_UNIT_INFO

74Clarifications for WFS_INF_CIM_GET_P6_INFO

75Clarifications for WFS_INF_CIM_GET_P6_SIGNATURE

75Clarifications for WFS_INF_CIM_CASH_IN_STATUS

76Clarifications for WFS_CMD_CIM_CASH_IN_START

76Clarifications for WFS_CMD_CIM_CASH_IN

78Clarifications for WFS_CMD_CIM_CASH_IN_END

78Clarifications for WFS_CMD_CIM_CASH_IN_ROLLBACK

79Clarifications for WFS_CMD_CIM_RETRACT

80Clarifications for WFS_CMD_CIM_OPEN_SHUTTER

81Clarifications for WFS_CMD_CIM_START_EXCHANGE

82Clarifications for WFS_CMD_CIM_END_EXCHANGE

83Clarifications for WFS_CMD_CIM_RETRACT

83Clarifications for WFS_CMD_CIM_RESET

84Clarifications for WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS

84Clarifications for WFS_CMD_CIM_CONFIGURE_NOTETYPES

84Clarifications for WFS_CMD_CIM_CREATE_P6_SIGNATURE

85Clarifications for WFS_USRE_CIM_CASHUNITTHRESHOLD

85Clarifications for WFS_SRVE_CIM_CASHUNITINFOCHANGED

85Clarifications for WFS_EXEE_CIM_CASHUNITERROR

86Clarifications for WFS_SRVE_CIM_ITEMSTAKEN

86Clarifications for WFS_SRVE_CIM_COUNTS_CHANGED

86Clarifications for WFS_EXEE_CIM_INPUTREFUSE

86Clarifications for WFS_SRVE_CIM_ITEMSPRESENTED

86Clarifications for WFS_SRVE_CIM_ITEMSINSERTED

86Clarifications for WFS_EXEE_CIM_NOTEERROR

87Clarifications for WFS_EXEE_CIM_INPUT_P6

87ATM Cash In Transaction Flow – Application Guidelines

87OK Transaction (Explicit Shutter Control)

88Cancellation by Customer (Explicit Shutter Control)

89Stacker becomes full (Explicit Shutter Control)

90Bill recognition error (Explicit Shutter Control)

91OK Transaction (Implicit Shutter Control)

92Cancellation by Customer (Implicit Shutter Control)

93Implicit Control Of the Shutter – WFS_EXEE_CIM_SUBCASHIN event

94Multiple Refused Notes (Implicit Shutter Control)

95Multiple Rollback Notes (Implicit Shutter Control)

96Rules for Cash Unit Exchange

Introduction

These release notes provide clarifications and explanations for the Device Class Interface Programmer’s References Revision 3.00. Rather than updating the Device Class Interface specifications each time a new clarification is required, CEN/ISSS established release notes should be developed that aggregates the clarifications and explanations. These release notes serve that purpose. The release notes will provide clarifications of problems reported to CEN/ISSS which do not require functional changes. When a Device Class Interface Programmer’s Reference is updated for functional changes then all clarifications contained in these release notes at the current revision level for that Device Class will be incorporated into the new revision.

The clarification will be incorporated into the appropriate section copied from the affected Device Class Interface Programmer’s Reference and be printed as bold and underlined.

Generic Clarifications

Backward compatibility

XFS 3.0 manager should support 2.0 service providers.

Application developers should be aware that the format of the hardware error event is different.

A locking event does not exist in 2.0 and is introduced in 3.0.

Clarifications for lpszExtra in all commands and across all device classes

Many device classes have an lpszExtra field defined in the Status and Capabilities structures. These fields are defined for vendor dependent information. However, XFS has defined a set of reserved standardised values which should not be used for any other purpose.

The description of lpszExtra is changed to read:
lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extendable by service providers. Each string is null-terminated, the whole list terminated with an additional null character. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

Architectural and Implementation Issues

The remainder of this document provides the technical specifications for the CEN/ISSS Extensions for Financial Services (referred to hereafter as “XFS” for brevity).

In this specification, the functions of the XFS Application Programming Interface (API) and Service Provider Interface (SPI) are always described in terms of providing a standardized, portable interface for applications to gain access to service providers. This architecture allows service providers to deliver an open-ended set of capabilities to financial applications based on the Microsoft Windows operating systems, including access to peripheral devices unique to financial institutions. Since the first priority of the CEN members for XFS implementations has been to provide this peripheral device access capability, the examples used relate primarily to device control and physical input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI definition, used by the XFS Manager to communicate with the service providers, together with the set of supporting services provided by the XFS Manager. These elements are combined in a XFS implementation, providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an application uses the API to communicate successfully with a service provider, it should work with another conformant service provider of the same type, developed by another vendor, without any changes.

Addition to description: To work with more than one hardware implementation of a device, an application must retrieve the device capability information – this will allow the application to successfully interact with different variants of the same hardware device. Applications that use the vendor specific fields of XFS commands may not be able to interact successfully with another vendor’s conformant SP. Applications should isolate vendor specific access to devices in order to maximise consistent device control across multiple device SP implementations.

Any service provider that conforms to the SPI definition can work with a range of conformant applications.

Addition to description: As new versions of the XFS device classes are developed and released, changes to the device class interface specifications are inevitable. Application exposure to these changes is controlled via the version negotiation process described later in this specification. Applications need to be updated to support new releases of XFS, but to minimise the migration effort it is recommended that they should be developed in such a way that they can handle additional error codes and new output literal values being added to existing commands within future versions of XFS in a graceful manner. In addition, applications must release the memory for all events received, this includes events that the application may be unaware at development time, i.e. the minimum processing for any XFS event must be the release of the memory associated with the event.

….

Clarifications for Synchronous Functions
….

If a blocking operation is not completed immediately in a Windows 3.x system, the XFS Manager executes a Windows message loop on behalf of the calling thread, thereby keeping the Windows system running. See Section 4.12 for a more detailed discussion of process, threads and message loops. In Windows NT, tThe calling application thread is blocked on request completion. A thread may have only one blocking XFS call outstanding at any one time. See Section 4.12 for additional discussion of the management of synchronous functions, including replacement of the default message loop.
….
Closing a Session

When an application no longer requires the use of a particular service, it issues a WFSClose or WFSAsyncClose request. The XFS subsystem then closes that session as follows:

SYMBOL 183 \f "Symbol" \s 10 \h
The XFS Manager calls the service provider's WFPClose function.

SYMBOL 183 \f "Symbol" \s 10 \h
The service provider schedules the request for deferred processing, and returns immediately to the XFS Manager. Note that at this point the service handle, hService, is no longer valid.

SYMBOL 183 \f "Symbol" \s 10 \h
At some point, the service provider processes the deferred close request, communicating with the service as necessary to accomplish the request.

SYMBOL 183 \f "Symbol" \s 10 \h
Requests that were issued by the application before the close are executed.

SYMBOL 183 \f "Symbol" \s 10 \h
If the calling application has the service locked under the same hService, the service provider unlocks it automatically (following the standard lock policy as defined in Section 4.8).

SYMBOL 183 \f "Symbol" \s 10 \h
The service cleans up its administrative information (removes WFSRegister entries etc.).

If the XFS subsystem loses connection to an application, it closes the session as described above, and:

SYMBOL 183 \f "Symbol" \s 10 \h
An “application disconnect” event (SYSTEM_EVENT class) is generated.

SYMBOL 183 \f "Symbol" \s 10 \h
Since messages can no longer be posted to the application, any command completion and event notification messages from this service for the application are converted to “undeliverable message” events (SYSTEM_EVENT class).

Note that it is required that some application have registered for system events, or these events are effectively not reported.

Addition to description:

When a Service Provider receives a Close request for a session, its behaviour may vary as follows,

· When the session has no outstanding requests the service provider will complete the Close request (even if it is executing a command from another session or has outstanding deferred requests from another session)

· When the session that issues the close request has an outstanding request then the service provider will defer the Close until all outstanding requests are complete.

Configuration Information

…..

These functions are used by Service Providers and applications to write and retrieve the configuration information for an XFS subsystem, which is stored in a hierarchical structure called the Windows Registry. The structure and the functions are based on the Win32/Win64 Registry architecture and API functions, and are implemented in Windows NT/98 and future versions of Windows using the Registry and the associated functions.

…..

Change to description: Within the local PC dependent configuration information are stored the following XFS related keys;

· XFS_MANAGER – Beneath this key are values and/or keys for information that the XFS Manager creates and uses.

· SERVICE_PROVIDERS – Beneath this key is a key for each XFS compliant service provider.

· PHYSICAL_SERVICES – Beneath this key are physical attachment configuration information, defined by the solution provider.

· MANAGEMENT_PROVIDERS – Reserved for XFS SNMP Management. Beneath this key is a key for each XFS SNMP Managed Service.
…..

The figure below illustrates the full structure of the local PC dependent configuration information.

[image: image1.wmf]HKEY_LOCAL_MACHINE

XFS

SOFTWARE

XFS_MANAGER

SERVICE_PROVIDERS

PHYSICAL_SERVICES

XFS

 Info 1

XFS

 Info N

SP

Info 1

SP

Info N

PS

Info 1

PS

Info N

MANAGEMENT_PROVIDERS

MP

Info 1

MP

Info N

The XFS_MANAGER key has the following optional values:

· TraceFile
the name of the file containing trace data. If this value is not set in the
configuration, trace data is written to the default file path\name
C:\XFSTRACE.LOG.

· ShareFilename
the name of the memory mapped file used by the memory management functions
of the XFS Manager.

· ShareFilesize
the size of the memory mapped file used by the memory management functions
of the XFS Manager.

Some additional values may also be defined in the implementation of the XFS Manager. Please refer to the related document for more information.

Beneath the SERVICE_PROVIDERS key there are keys for each individual service providers, the keys are the service provider names. Each of these keys have three mandatory values:

	· dllname
	the name of the file containing the service provider DLL

	· vendor_name
	the name of the supplier of this service provider

	· version
	the version number of this service provider. This version number is a vendor specific service provider implementation version; it has no relation to version of the standard.

…..

Addition to description: Beneath the MANAGEMENT_PROVIDERS key there are keys for each XFS SNMP Managed Service, the keys are the managed service names. The structure of these keys is defined within the XFS MIB Architecture specification.

…..

An example of the content of the configuration information is shown below. See Section 8 for the definitions of the configuration functions.
	[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyCurrencyDispenser]

"class"="CDM"

"provider"="CDM"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyCardReader]

"class"="IDC"

"provider"="IDC"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyJournalPrinter]

"class"="PTR"

"provider"="JPTR"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyPassbookPrinter]

"class"="PTR"

"provider"="PPTR"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyPinpad]

"class"="PIN"

"provider"="PIN"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyReceiptPrinter]

"class"="PTR"

"provider"="RPTR"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyStatementPrinter]

"class"="PTR"

"provider"="SPTR"
[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\CDM]

"dllname"="C:\ Program Files \ABCTech\XFS PRODUCT\XFS CDM Service Provider\ABCTech_9827SP.dll"

"vendor_name"="ABCTech Corporation"

"version"="1.0.0"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\IDC]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS IDC Service Provider\ABCTech_1212SP.dll"

"vendor_name"="ABCTech Corporation"

"version"="1.0.1"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\JPTR]

"vendor_name"="ABCTech Corporation"

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_9001SP.dll"

"version"="1.2.4"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\PIN]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PIN Service Provider\ABCTech_1234SP.DLL"

"vendor_name"="ABCTech Corporation"

"version"="1.34.8"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\PPTR]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_2411SP.dll"

"vendor_name"="ABCTech Corporation"

"version"="1.2.3"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\RPTR]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_1028SP.dll"

"vendor_name"="ABCTech Corporation"

"version"="1.9.4"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\SPTR]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_1028SP.dll"

"vendor_name"="ABCTech Corporation"

"version"="1.9.4"

Notes

1) In the above example the receipt and statement printer services are all implemented through a single physical printer and service provider DLL. The service provider determines which type of service the application has requested by the vendor specific configuration information.

Clarifications for description of ShareMapAddr

ShareMapAddr
the address of the beginning of the XFS Manager Shared Memory. Care should be taken when using this value to control the load address of shared memory. When used, the address chosen should be consistently accessed across all XFS processes. A value of zero will result in the shared memory allocation being dynamic.
Notification Mechanisms — Registering for Events

Change to description:
For the first three of these event classes, if a class is being monitored and an event occurs in that class, a message is broadcast to every hWnd registered for that class, specifying the service identified by the hService handle containing the service handle of the session that the event is sent to.

Addition to description:
A message generated by one of these events is sent only to the application that issued the WFSExecute/WFSAsyncExecute that caused the event, even though other applications are registered for EXECUTE_EVENTS. In this case an application is defined as all window handles associated with the hService through a WFSRegister call requesting EXECUTE_EVENTS.

…

Additional sentence at end of the chapter:
Note that an event notification message always passes the information describing the event to an application by pointing to a WFSRESULT data structure. After the application has used the data in the structure, it must free the memory that the service provider allocated for the WFSRESULT data structure, using the WFSFreeResult function. The hResult field of the WFSRESULT structure is not used unless the event is a command completion event or explicitly defined in this specification.
Application Processes, Threads and Blocking Functions

An application process contains one or more threads of execution. The XFS interface is designed to work in both the single-threaded versions of the Windows operating systems (Windows 3.1 and Windows for Workgroups) and in the multi-threaded versions of Windows (Windows NT and future versions of Windows). All references to threads in this document refer to actual threads in multi-threaded Windows environments. In single-threaded environments, “thread” is synonymous with “process.”

Within the XFS Manager, a blocking (synchronous) function is handled as follows:
The XFS Manager initiates the operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processor to other applications as necessary) and checks for the completion of the operation. When the operation completes, or WFSCancelBlockingCall is invoked, the blocking operation completes with an appropriate result.

1. The XFS Manager creates a transitory HWND on the calling thread to receive the completion message for the operation e.g. WFS_EXECUTE_COMPLETE.

2. The XFS Manager calls the Service Provider WFP API, passing the transitory HWND.

3. The XFS Manager waits for the completion message to be received. It does this by entering a loop equivalent to the following pseudo code, calling the current blocking hook (a Windows message dispatch routine) waiting for the completion message to be received from the Service Provider.

for(;;) {
/* flush messages for good user response */
for(;;) {
BlockingHook();
/* check for WFSCancelBlockingCall() */
if (operation_cancelled())
 break;
/* check to see if operation completed */
if(operation_completed())
 break; /* normal completion */
}

where the Default Blocking Hook is equivalent to:

BOOL DefaultBlockingHook(void) {
 MSG msg = {0};
 BOOL ret = GetMessage(&msg, NULL, 0, 0);
 if((int) ret != -1) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 /* FALSE if we got a WM_QUIT message */
 return(ret);
}
4. On reception of the completion message, the XFS Manager exits the loop.

5. The XFS Manager destroys the transitory HWND.

6. The blocking operation completes. The blocking function return code is copied from the completion message lpWFSResult hResult field. If applicable, the lpWFSResult is also returned.

The thread, on which the blocking function has been called, is not permitted to issue any XFS calls other than the following two specific functions provided to assist the developer in this situation.

· WFSIsBlocking determines whether or not a blocking function is in progress.

· WFSCancelBlockingCall cancels a blocking function in progress.

Any other XFS function, called from a thread with a blocking function in progress, will fail with the error WFS_ERR_OP_IN_PROGRESS.

Developers must be aware that WFSIsBlocking cannot simply be called in a loop waiting for the blocking function to complete. The application must allow the message handler to return to allow control to return to the blocking hook. Otherwise, the blocking function will not complete.

When a Windows message is received for a thread for which a blocking operation is in progress, the thread is not permitted to issue any XFS calls during the processing of the message, other than the two specific functions provided to assist the programmer in this situation:

· WFSIsBlocking determines whether or not a blocking call is in progress.

· WFSCancelBlockingCall cancels a blocking call in progress.

Any other XFS function called when a blocking call is in progress fails with the error WFS_ERR_OP_IN_PROGRESS. This restriction applies to requests for both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require more complex message processing while blocked for a synchronous calla blocking function is executing, such as processing messages relating to MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such applications, the XFS API includes the function WFSSetBlockingHook, which allows the programmerdeveloper to define a special routine custom blocking hook which will be called instead of the default message dispatch routine blocking hook described above. This function gives an application the ability to execute its own routine at blocking time in place of the default routine. It is not intended as a mechanism for performing general application functions while blocked; it is still true that the only XFS functions that may be called from a blocking routine are WFSIsBlocking and WFSCancelBlockingCall. The asynchronous versions of the XFS functions must be used to allow an application to continue processing while an operation is in progress. Developers must be aware of their responsibility when replacing the default blocking hook. The developer must ensure:
· All messages are processed in the order received. If not, the potential exists for the Service Provider to be blamed for sending messages in the wrong order e.g. a WFS_EXECUTE_EVENT message after a WFS_EXECUTE_COMPLETE.
· All messages are processed. If not, the potential exists that the thread message queue will fill preventing other messages being added to the queue, including the Service Provider attempt to post the completion message being waited on.

The developer must be aware that replacing the default blocking hook impacts the process. The custom blocking hook will be called from every thread which makes use of XFS blocking functions.

This mechanism is provided to allow a Windows 3.x or Windows for Workgroups application to make blocking calls without blocking the rest of the system. Under Windows NT and future multi-threaded, preemptive versions of Windows, the default blocking action is to suspend the calling application's thread until the request completes. This is because the system is not blocked by a single application waiting for an operation to complete, and hence not calling PeekMessage or GetMessage, which are required in the non-preemptive systems in order to cause the application to yield control.

Therefore, if a single-threaded application is targeted at both single- and multi-threaded environments, and relies on this functionality, it should install a specific blocking hook by calling WFSSetBlockingHook, even if the default hook would suffice. This maximizes the portability of applications that depend on the blocking hook behavior. Programmers who are constrained to use blocking mode - for example, as part of an existing application which is being ported - should be aware of the semantics of blocking operations.

In the XFS implementation in a single-threaded environment, the blocking function operates as follows. When an application requests a blocking XFS API function, the XFS Manager initiates the requested function and then enters a loop which is equivalent to the following pseudo-code:

for(;;) {

/* flush messages for good user response */

DefaultBlockingHook();

/* check for WFSCancelBlockingCall() */

if(operation_cancelled())

break;

/* check to see if operation completed */

if(operation_complete())

break;

/* normal completion */

}

The DefaultBlockingHook routine is equivalent to:

BOOL DefaultBlockingHook(void) {

MSG msg;

BOOL ret;

/* Wait for the next message */

ret = GetMessage(&msg, NULL, 0, 0);

if((int) ret != -1) {

TranslateMessage(&msg);

DispatchMessage(&msg);

}

/* FALSE if we got a WM_QUIT message */

return(ret);

}

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads. Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads "simultaneously" issue WFSExecute requests to send data to the same service, there is no guarantee as to the order in which the data is sent. This is true in general; the application is responsible for coordinating access by multiple threads to any object (e.g. other forms of I/O, such as file I/O), using appropriate synchronization mechanisms. The XFS Manager can not, and will not, address these issues. The possible consequences of failing to observe these rules are beyond the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-threaded environments, the concept of "application identity" can optionally be managed explicitly by the application developer using the concept of application handles. See Sections 4.5 and 4.8.2 for additional discussion of this concept.
Application Programming Interface (API) Functions

Add sentence at the end of introduction:

The service-specific commands are defined in separate specifications–one for each service class. In addition, the XFS SNMP MIB architecture specification defines a number of category codes that are common across all service classes.

Clarifications for WFSOpen/WFSAsyncOpen

Comments
Addition: In order to support future XFS implementations with maximum flexibility, two version negotiations take place in WFSOpen processing. An application specifies in the dwSrvcVersionsRequired parameter the range of versions of the service-specific interface (as defined by the events and error codes within this specification and in the separate XFS specifications for specific classes of devices, such as banking printers and cash dispensers) that it can support. If the range of versions specified by the application overlaps the range of versions that the service provider’s implementation can support, the call succeeds. Otherwise the call fails. (The other negotiation that takes place during the open process is between the XFS Manager and the service provider regarding the SPI level. See WFPOpen for details.)

The following sentences are added to the end of the Comments section:

If a valid service provider is available, the Open command will not complete until the service provider and all its dependencies are running. That is, if an out of process executable is required by this service provider, this executable should be running and fully initialized before completion of the Open command.

The starting and stopping of external dependent processes is not defined as the responsibility of the service provider, but the latter has to be aware of and respond correctly to the Open command according to external dependent process state.

In addition, if the specified timeout period expires before dependent external processes have correctly initialized, the service provider must complete and return WFS_ERR_TIMEOUT as expected.

The version negotiation chart is modified as follows:

	dwSrvcVersionsRequired (Version required by application)
	lpSrvcVersion.

wLowVerion lpSrvcVersion.

wHighVersion
(Service Provider versions)
	Return status from WFSOpen
	lpSrvcVersion.

wVerion
(Result)

	0x00010001
(1.00)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x00010A02
(1.00 - 2.10)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x0B010B01
(1.11)
	0x0001 0x0002
(1.00 - 2.00)
	WFS_SUCCESS
	0x0B01
(use 1.11)

	0x0B020003
(2.11 - 3.00)
	0x0001 0x1402
(1.00 - 2.20)
	WFS_SUCCESS
	0x1402
(use 2.20)

	0x00010001
(1.00)
	0x1402 0x0003
(2.20 - 3.00)
	WFS_ERR_SRVC_VER_TOO_LOW
	0x0000
(fails)

	0x0B010003
(1.11 - 3.00)
	0x0001 0x0001
(1.00)
	WFS_ERR_SRVC_VER_TOO_HIGH
	0x0000
(fails)

Clarifications for WFSStartUp

The version negotiation chart is modified as follows:

	dwVersionsRequired (Version required by application)
	lpWfsVersion.

wLowVerion lpWfsVersion.

wHighVersion
(XFS Manager versions)
	Return status from WFSStartUp
	lpWfsVersion.

wVerion
(Result)

	0x00010001
(1.00)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x00010A02
(1.00 - 2.10)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x0B010B01
(1.11)
	0x0001 0x0002
(1.00 - 2.00)
	WFS_SUCCESS
	0x0B01
(use 1.11)

	0x0B020003
(2.11 - 3.00)
	0x0001 0x1402
(1.00 - 2.20)
	WFS_SUCCESS
	0x1402
(use 2.20)

	0x00010001
(1.00)
	0x1402 0x0003
(2.20 - 3.00)
	WFS_ERR_API_VER_TOO_LOW
	0x0000
(fails)

	0x0B010003
(1.11 - 3.00)
	0x0001 0x0001
(1.00)
	WFS_ERR_API_VER_TOO_HIGH
	0x0000
(fails)

Clarifications for WFPOpen

The version negotiation chart is modified as follows:

	dwSPIVersionsRequired (Application versions)
	lpSPIVersion.wLowVerion lpSPIVersion.wHighVersion
(Service Provider versions)
	Return status from WFPOpen
	lpSPIVersion.

wVerion
(Result)

	0x00010001
(1.00)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x00010A02
(1.00 - 2.10)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x0B010B01
(1.11)
	0x0001 0x0002
(1.00 - 2.00)
	WFS_SUCCESS
	0x0B01
(use 1.11)

	0x0B020003
(2.11 - 3.00)
	0x0001 0x1402
(1.00 - 2.20)
	WFS_SUCCESS
	0x1402
(use 2.20)

	0x00010001
(1.00)
	0x1402 0x0003
(2.20 - 3.00)
	WFS_ERR_SPI_VER_TOO_LOW
	0x0000
(fails)

	0x0B010003
(1.11 - 3.00)
	0x0001 0x0001
(1.00)
	WFS_ERR_SPI_VER_TOO_HIGH
	0x0000
(fails)

	dwSrvcVersionsRequired (Versions required by the application):
	lpSrvcVersion.wLowVersion lpSrvcVersion.wHighVersion (Service Provider versions):
	Return status from WFPOpen:
	lpSrvcVersions.wVersion
(Result):

	0x00010001
(1.00)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x00011002
(1.00 - 2.10)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x0B010B01
(1.11)
	0x0001 0x0002
(1.00 - 2.00)
	WFS_SUCCESS
	0x0B01
(use 1.11)

	0x0B020003
(2.11 - 3.00)
	0x0001 0x1402
(1.00 - 2.20)
	WFS_SUCCESS
	0x1402
(use 2.20)

	0x00010001
(1.00)
	0x1402 0x0003
(2.20 - 3.00)
	WFS_ERR_SRVC_VER_TOO_LOW
	0x0000
(fails)

	0x0B010003
(1.11 - 3.00)
	0x0001 0x0001
(1.00)
	WFS_ERR_SRVC_VER_TOO_HIGH
	0x0000
(fails)

Service Provider Interface (SPI) Functions

The service provider functions are described in the following sections, in alphabetical order. The table below shows the SPI functions, the sections in which they are defined, their modes, and the API functions they implement.

Addition to description: The asynchronous SPI functions behaviour is influenced by whether the function is Deferred or Non-deferred [see section 4.8 Exclusive Service & Device Access]. An asynchronous non-deferred function (for example WFPRegister) can be processed completely by the service as soon as it is received. An asynchronous deferred function (for example WFPExecute) cannot be processed completely as soon as it arrives, because it may require hardware and/or operator interaction.

Configuration Functions

Clarifications for WFMCloseKey

Parameters
HKEY hKey
Handle to the currently open key that is to be closed.

Comments
The hkey handle can not be used after it has been closed, because it will no longer be valid. Note that it is not valid to close the an XFS root key (passing WFS_CFG_HKEY_XFS_ROOT one of the pre-defined handles as the value for the hkey parameter).
Clarifications for WFMCreateKey

Description
Change to description: Creates a new key or, if the specified key exists, opens it.

The first use of hKkey by a process sets the migration mode for that process. The use of this function is an application decision: the XFS Manager must not automatically migrate the registry values at load time.
Be aware that when you use the WFMCreateKey function is used for the first time and set the hKey parameter is set to WFS_CFG_HKEY_XFS_ROOT then you’re the existing registry structure will be migrated from HKEY_CLASSES_ROOT to HKEY_LOCAL_MACHINE. If either of the new values WFS_CFG_MACHINE_XFS_ROOT or WFS_CFG_USER_DEFAULT_XFS_ROOT are used then no migration will take place for this process. The assumption is that any process using the new key values will be doing its own migration. The reason migration does not always take place is that some applications will require access to both the old and new key roots so that they can migrate their non-CEN keys and values.

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
WFS_CFG_MACHINE_XFS_ROOT
WFS_CFG_USER_DEFAULT_XFS_ROOT
The key opened or created by this function is a subkey of the key identified by this parameter.

Clarifications for WFMDeleteKey

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
The key specified by the lpszSubKey parameter must be a subkey of the key identified by this parameter.

Clarifications for WFMDeleteValue

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
Clarifications for WFMEnumKey

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
The keys enumerated by this function are subkeys of the key identified by this parameter.

Clarifications for WFMEnumValue

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
The value enumerated by this function is a value of the key identified by this parameter.

Clarifications for WFMOpenKey

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:

WFS_CFG_HKEY_XFS_ROOT
The key opened by this function is a subkey of the key identified by this parameter.

Clarifications for WFMQueryValue

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
The value data returned is within the key identified by this parameter.

Clarifications for WFMSetValue

Parameters
HKEY hKey
Handle to a currently open key, or one of the predefined handles. value:
WFS_CFG_HKEY_XFS_ROOT
The value set or created is within the key identified by this parameter.

Data Structures

Clarifications for WFSRESULT

Field
Description

hService
Service handle identifying the session that created the result, i.e. the service handle of the session that the event is sent to.

Messages

Clarifications for Event Messages

WFS_EXECUTE_EVENT

WFS_SERVICE_EVENT

WFS_USER_EVENT

WFS_SYSTEM_EVENT

The hService parameter of the WFSRESULT structure, in the above event messages, contains the service handle of the session that the event is sent to.

Clarifications for WFS_SYSE_DEVICE_STATUS
Status changes of logical services (which typically reflect changes in physical devices) are reported as system events. This is in addition to being reported by the WFS_INF_xxx_STATUS query of the WFSGetInfo or WFSAsyncGetInfo functions. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field
Description

hService
Service handle identifying the session that created the result, i.e. the service handle of the session that the event is sent to.
Clarifications for WFS_SYSE_UNDELIVERABLE_MSG
If a command completion or event message cannot be delivered, it is reported as a system event. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field
Description

hService
Service handle identifying the session associated with the completion or event that the event is sent to.

…

lpBuffer
Pointer to a WFSUNDEVMSG structure:

…

The members of this structure are:

Field
Description

lpWFSResult
Pointer to the WFSRESULT structure of the original message (which has the lpBuffer parameter set to NULL). This structure includes the hService of the session where the message could not be delivered.
Clarifications for WFS_SYSE_APP_DISCONNECT
If the XFS subsystem loses connection to an application, it closes the session (see Section 3.6) and generates this system event. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field
Description

hService
Service handle identifying the session associated with the event that the event is sent to.

Clarifications for WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR and WFS_SYSE_USER_ERROR
Hardware and software errors are reported as system events. In most cases, this is in addition to being reported via the WFS_ERR_HARDWARE_ERROR (or device class specific error code) or the WFS_ERR_SOFTWARE_ERROR or WFS_ERR_USER_ERROR error code that is returned when a hardware or software or user error occurs in the course of executing a function as the command completion.

In order to supply the maximum information, these events should be sent as soon as an error is detected. In particular, if an error is detected during the processing of an execute command, then the event should be sent before the command completion event.

The WFSRESULT data structure (defined in Section 8.1), is utilized as follows:

Field
Description

RequestID
Request ID of the request being processed when the error occurred, zero if no request was being processed when the error occurred. (if any)
hService
Service handle identifying the session associated with the error that the event is sent to. (if any)
tsTimestamp
Time the error occurred (local time, in a Win32 SYSTEMTIME structure)

hResult
Result handle of the request being processed when the error occurred, zero if no request was being processed (if any)
u.dwEventID
The ID of the error

Value
Meaning

WFS_SYSE_HARDWARE_ERROR
The error is a hardware error

WFS_SYSE_SOFTWARE_ERROR
The error is a software error

WFS_SYSE_USER_ERROR
The error is a user error

lpBuffer
Pointer to a WFSHWERROR structure:

typedef struct _wfs_hwerror {

LPSTR

lpszLogicalName;

LPSTR

lpszPhysicalName;

LPSTR

lpszWorkstationName;

LPSTR

lpszAppID;

DWORD

dwAction;

DWORD

dwSize;

LPBYTE

lpbDescription;

} WFSHWERROR, * LPWFSHWERROR;

The members of this structure are:

Field
Description

lpszLogicalName
Pointer to the logical service name of the service that generated the error (if any)

lpszPhysicalName
Pointer to the physical service name of the service that generated the error (if any)

lpszWorkstationName
Pointer to the name of the workstation in which the logical service name is defined (if any)

lpszAppID
Pointer to the application ID associated with the session that generated the error (if any)

dwAction
The action required to manage the error. Possible values are:

Value
Meaning

WFS_ERR_ACT_NOACTION
No action required. Error was autorecovered.

WFS_ERR_ACT_RESET
Reset device to attempt recovery.

WFS_ERR_ACT_SWERROR
A software error occurred. Contact software vendor.

WFS_ERR_ACT_CONFIG
A configuration error occurred. Check configuration.

WFS_ERR_ACT_HWCLEAR
Change to description: Recovery is not possible. A manual intervention for clearing the device is required. This value is only used for hardware errors. This value is typically returned when a hardware error has occurred which requires banking personnel specific maintenance, e.g. ‘replace paper’, or ‘remove cards from retain bin’.
WFS_ERR_ACT_HWMAINT
Change to description: Recovery is not possible. A technical maintenance intervention is required. This value is only used for hardware errors. This value is typically returned when a hardware error has occurred which requires field engineer specific maintenance activity.
WFS_ERR_ACT_SUSPEND
Device will attempt auto recovery and will advise any further action required via a Device Status Event.

dwSize
The size in bytes of the following description

lpbDescription
Pointer to a vendor-specific description of the error

Clarifications for the meaning and use of Physical Service Name

The Physical Service Name contained within the Device Status Change event and the Hardware & Software Error events is used to uniquely describe the physical service which caused the event and therefore each physical service name is unique per device instance on each workstation.

Clarifications for lpszLogicalName and lpszPhysicalName in section 10.6 (Hardware and Software Errors):

The description for lpszLogicalName and lpszPhysicalName should read:

Field
Description

lpszLogicalName
Pointer to the logical service name of the service that generated the error.

lpszPhysicalName
Pointer to the physical service name of the service that generated the error.

Clarifications for use of the dwAction field in section 10.6 (Hardware and Software Errors):

The following table should be appended to the end of section 10.6:

Note:

The following table describes what dwAction may be returned for the various Hardware, Software & User Error Events :-

	
	Generated on Hardware Event?
	Generated on Software Event?
	Generated on User Event?

	_NOACTION
	Yes
	Yes
	Yes

	_RESET
	Yes
	Yes
	Yes

	_SWERROR
	No
	Yes
	No

	_CONFIG
	Yes
	Yes
	No

	_HWCLEAR
	Yes
	No
	No

	_HWMAINT
	Yes
	No
	No

	_SUSPEND
	No
	No
	Yes

C_Header file

Add the following comment:

/****** XFS SNMP MIB Category Codes **********************************/

/* NOTE: To support the XFS SNMP MIB, the WFSGet[Async]Info category codes between 60000 and 60999 are reserved.*/

/****** API functions ***/

Device Classes

Clarifications for Device State reporting

The following wording should be used in the Comments section of all device classes (substitute XXX for the correct 3 letter device acronym):

In the case where communications with the device has been lost, the fwDevice field will report WFS_XXX_DEVPOWEROFF when the device has been removed or WFS_XXX_DEVHWERROR if the communications are unexpectedly lost. All other fields should contain a value based on the following rules and priority:

1) report the value as unknown

2) report the value as a general h/w error

3) report the value as the last known value.

Printers

Class Name

PTR

The WFS_ERR_PTR_SOURCEINVALID error code is listed in the xfsptr.h header file but is not described in the main document. It is returned for the commands WFS_CMD_PTR_DISPENSE_PAPER and WFS_CMD_PTR_PRINT_FORM where a paper source can be selected. The description should read as follows:

Value
Meaning

WFS_ERR_PTR_SOURCEINVALID
The selected paper source is not supported by the hardware.

Clarifications for Section Banking Printer Types

The last section is clarified as follows:

The specification refers to the terms paper and media. When the term paper is used this refers to paper that is situated in a paper supply attached to the device. The term media is used for media that is inserted by the customer (e.g. check and other material that is scanned) or that is issued to the customer (e.g. a receipt or statement). That means that a journal printer has only paper and scanners have only media. Receipt, document printers and also passbook printers with white passbook dispensing capability have both. Scanners only have media. The term media does not apply to journal printers. When paper is in the print position it is classified as media, on some printers that maintain paper under the print head there will always be both media and paper.
Clarifications for WFS_INF_PTR_CAPABILITIES

Output Param
…
fwType
Specifies the type(s) of the physical device driven by the logical service, as a combination of the following flags:

Value
Meaning

WFS_PTR_TYPESCANNER
Device is a scanner with that may have printing capabilities.

fwControl
Specifies the manner in which media can be controlled, as a combination of the following flags (zero if none of the choices is supported):

Value
Meaning

WFS_PTR_CTRLFLUSH
Device can be sent data that is buffered internally by the device, and flushed to the printer on request.

Clarifications for WFS_INF_PTR_STATUS

Output Param
fwMedia
Change to description: Specifies the state of the print media (i.e., receipt, statement, passbook, etc..) as one of the following values. This field does not apply to journal printers.
Value
Meaning

WFS_PTR_MEDIAPRESENT
Change to description: Media is in the print position or on the stacker (i.e. a passbook in the parking station is not considered to be present). On devices with continuous paper supplies, this value is set when paper is under the print head. On devices with no supply or individual sheet supplies, this value is set when paper/media is successfully inserted/loaded.
WFS_PTR_MEDIARETRACTED
Change to description: Media is not present because it was retracted during the reset operation.

Clarifications for WFS_INF_PTR_QUERY_FORM

Output Param
lpszUserPrompt
Change to description: Pointer to a null-terminated user prompt string. NULL will be returned if the form does not define a value for the user prompt.

Clarifications for WFS_INF_PTR_QUERY_MEDIA

Output Param
wPaperSources
Change to description: Specifies the Paper sources to use when printing forms using this media as a combination of the following flags

Value
Meaning

WFS_PTR_PAPERANY
Use any paper source.

WFS_PTR_PAPERUPPER
Use the only or the upper paper source.

WFS_PTR_PAPERLOWER
Use the lower paper source.

WFS_PTR_PAPEREXTERNAL
Use the external paper source.

WFS_PTR_PAPERAUX
Use the auxiliary paper source.

WFS_PTR_PAPERAUX2
Use the second auxiliary paper source.

WFS_PTR_PAPERPARK
Use the parking station.

Clarifications for WFS_INF_PTR_QUERY_FIELD

Output Param
LPWFSFRMFIELD *lppFields;

fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following values:

Value
Meaning

WFS_FRM_OVFWORDWRAP
If the field can hold more than one line the text is wrapped around. Wrapping is performed, where possible, by splitting the line on a space character or a hyphen character or any other character which is used to join two words together.
Clarifications for WFS_CMD_PTR_CONTROL_MEDIA

Input Param
LPDWORD lpdwMediaControl;

lpdwMediaControl
Pointer to a value which specifies the manner in which the media should be handled, as a combination of the following bit-flags:

Value
Meaning

WFS_PTR_CTRLFLUSH
Flush any data to the printer that has not yet been printed from previous WFS_CMD_PTR_PRINT_FORM commands. This will synchronize the application with the device to ensure that all data has been physically printed.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PTR_NOMEDIAPRESENT
Change to description: No media is present in the device. The control action could not be completed because there is no media in the device, the media is not in a position where it can be controlled, or (in the case of WFS_PTR_CTRLRETRACT) has been removed

Clarifications for WFS_CMD_PTR_PRINTFORM

Input Param
lpszMediaName
Pointer to the null-terminated media name. lpszMediaName is NULL if no media definition applies.
dwMediaControl
Specifies the manner in which the media should be handled after the printing is done, as a combination of the flags described under WFS_CMD_PTR_CONTROL_MEDIA. A zero value of this parameter means to do none of these actions, as when printing multiple forms on a single page. When zero is specified and the device does not support the WFS_PTR_CTRLFLUSH capability, the data will be printed immediately. If the device supports WFS_PTR_CTRLFLUSH, the data may be buffered and the WFS_CMD_PTR_CONTROL_MEDIA command should be used to synchronize the application with the device to ensure that all data has been physically printed.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PTR_SOURCEINVALID
The selected paper source is not supported by the hardware.

Clarifications for WFS_CMD_PTR_READ_FORM

Input Param
lpszMediaName
Pointer to the null-terminated media name. lpszMediaName is NULL if no media definition applies.
Comments
Change to description: The application will use lpszFieldNames or lpszUNICODEFieldNames as an input parameter. The Service Provider will return the data in lpszUNICODEFields or lpszFields depending on the capabilities of the SP and form definition., depending upon the service provider capabilities. Legacy (non-UNICODE aware) applications will only use the lpszFieldNames field. UNICODE applications can use either the lpszFieldNames or lpszUNICODEFieldNames fields, provided the service provider is UNICODE compliant.
Clarifications for WFS_CMD_PTR_RETRACT_MEDIA

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:
Value
Meaning

WFS_ERR_PTR_NOMEDIAPRESENT
Change to description:No media present on retract. There was no media present (in a position to be retracted) when the command was called or the media was removed during the retract.

Clarifications for WFS_CMD_PTR_DISPENSE_PAPER

The input parameter description is corrected, to define the type as a LPWORD instead of a WORD.
Input Param
LPWORD lpwPaperSource;

lpwPaperSource
Change to description: Pointer to the Paper Source to dispense from. Possible values are:

Value
Meaning

WFS_PTR_PAPERANY
Any paper source can be used, it is determined by the service.

WFS_PTR_PAPERUPPER
Use the only paper source or the upper paper source, if there is more than one paper supply.

WFS_PTR_PAPERLOWER
Use the lower paper source

WFS_PTR_PAPEREXTERNAL
Use the external paper.

WFS_PTR_PAPERAUX
Use the auxiliary paper source.

WFS_PTR_PAPERAUX2
Use the second auxiliary paper source.

WFS_PTR_PAPERPARK
Use the parking station paper source.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PTR_SOURCEINVALID
The selected paper source is not supported by the hardware.

Clarifications for WFS_CMD_PTR_RESET

Input Param
LPWFSPTRRESET

lpReset;

Specifies where media should be moved to that is found in the device. If the application does not wish to specify a position it can set this value lpReset to NULL. In this case the service provider will determine where to move any items found.

wMediaControl
Pointer to a value which Specifies the manner in which the media should be handled, as a combination of the following bit one of the following values:

Value
Meaning

WFS_PTR_CTRLEJECT
Eject the media.

WFS_PTR_CTRLRETRACT
Change to description: Retract the media to the retract bin number one as specified in usRetractBinNumber
Events
The following event has been added to the WFS_CMD_PTR_RESET command:

Value
Meaning

WFS_USRE_PTR_RETRACTBINTHRESHOLD

The retract bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full. It is sent with WFS_PTR_RETRACTBINFULL or WFS_PTR_RETRACTBINHIGH status.

Clarifications for WFS_EXEE_PTR_NOMEDIA

Description
This event specifies that the physical media must be inserted into the device in order for the execute command to proceed.

Event Param
LPSTR

lpszUserPrompt;

lpszUserPrompt
Change to description: Pointer to a null-terminated user prompt string. NULL will be returned if either a form does not define a value for the user prompt or the event is being generated as the result of a command that does not use forms.

Comments
The application may use the lpszUserPrompt in any manner it sees fit, for example it might display the string to the operator, along with a message that the media should be inserted.
Clarifications for WFS_SRVE_PTR_MEDIATAKEN

Description
This event is sent when the media is taken from the exit slot following the completion of a successful eject operation or following a WFS_EXEE_PTR_MEDIAREJECTED event. For devices that do not physically move media, this event may also be generated when the media is taken from the device.
Clarifications for Definition Syntax

Other notes:

…

· A form and its optional subform that has multiple XFSFIELDs with the same fieldname is invalid. The WFS_ERR_PTR_FORMINVALID error will be returned if specified in the input to a command

· A form that has multiple XFSSUBFORMs with the same subformname is invalid. The WFS_ERR_PTR_FORMINVALID error will be returned if specified in the input to a command

· A form and its optional subform that has multiple XFSFRAMEs with the same framename is invalid. The WFS_ERR_PTR_FORMINVALID error will be returned if specified in the input to a command

Clarifications for Form Definition

	XFSFORM
	
	formname*
	

	BEGIN
	
	
	

	
	[XFSFIELD
	fieldname*
	One field definition (as defined in the next section) for each field in the form. The fieldname within a form and its optional subforms must be unique.

	
	
BEGIN

 . . .

END]
	
	

	
	[XFSFRAME
	framename*
	One frame definition (as defined in the next section) for each frame in the form. The framename within a form and its optional subforms must be unique.

	
	
BEGIN

 . . .

END]
	
	

	
	[XFSSUBFORM
	subformname*
	One subform definition (as defined in the next section) for each subform in the form. The subformname within a form must be unique.

	
	
BEGIN

 . . .

END]
	
	

	END
	
	
	

Clarifications for Subform Definition

	XFSSUBFORM
	
	subformname*
	The subformname within a form must be unique.

	BEGIN
	
	
	

	(required)
	POSITION
	X,
	Horizontal position (relative to left side of form)

	
	[XFSFIELD
	fieldname*
	One field definition (as defined in the next section) for each field in the subform. The fieldname within a form and its optional subform must be unique.

	
	
BEGIN

 . . .

END]
	
	

	
	[XFSFRAME
	framename*
	One frame definition (as defined in the next section) for each frame in the subform. The framename within a form and its optional subform must be unique.

	
	
BEGIN

 . . .

END]
	
	

	END
	
	
	

Clarifications for Field Definition

	XFSFIELD
	
	fieldname*
	The fieldname within a form and its optional subforms must be unique.

Clarifications for Frame Definition

The description of the FRAMES field in the frame definition is changed as follows:

	
	FRAMES
	fieldname*
	Frames the field with the name <fieldname>, positioning and size information are ignored.
The frame surrounds the complete field, not just the printed data.
If the field is repeated, the frame surrounds the first and last fields that are printed.

Identification Card Units

Class Name

IDC

Clarifications for WFS_CMD_IDC_READ_TRACK

Description
Change to description: For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, the tracks are read immediately as described in the form specified by the lpstrFormsName parameter.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for the period of time specified in the WFSExecute call for a card to be either inserted or pulled through. Again the next step is reading the tracks specified in the form (see Section 7, Form Definition, for a more detailed description of the forms mechanism). When the SECURE tag is specified in the associated form, the results of a security check via a security module (i.e., MM, CIM86) are added to the track data

If the security check fails however this should not stop valid data being returned. In this situation tThe error WFS_ERR_IDC_SECURITYFAIL will be returned if the form specifies only security data to be read and the security check could not be executed, in all other cases WFS_SUCCESS will be returned with the security field of the output parameter set to the relevant value including WFS_IDC_SEC_HWERROR.

Clarifications for WFS_CMD_IDC_RETAIN_CARD

Events
In addition to the generic events defined in [Ref.1], the following events can be generated by this command:
Value
Meaning

WFS_EXEE_IDC_MEDIARETAINED
The card has been retained. This event is only fired if the command completes successfully (WFS_SUCCESS).

Clarifications for WFS_CMD_IDC_READ_RAW_DATA

Description
For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, all specified tracks are read immediately. If reading the chip is requested, the chip will be contacted and reset and the ATR (Answer To Reset) data will be read. When this command completes the chip will be in contacted position. This command can also be used for an explicit cold reset of a previously contacted chip.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for the period of time specified in the WFSExecute call for a card to be either inserted or pulled through. The next step is trying to read all tracks specified.

Magnetic stripe track data is converted from its 5 or 7 bit character form to 8 bit ASCII form. The parity bit from each 5 or 7 bit magnetic stripe character is discarded. Start and end sentinel characters are not returned to the application. Field separator characters are returned to the application, and are also converted to 8 bit ASCII form.

In addition to that, a security check via a security module (i.e., MM, CIM86) can be requested. If the security check fails however this should not stop valid data being returned. In this situation tThe error WFS_ERR_IDC_SECURITYFAIL will be returned if the command specifies only security data to be read and the security check could not be executed, in all other cases WFS_SUCCESS will be returned with the lpbData field of the output parameter set to the relevant value including WFS_IDC_SEC_HWERROR.

Addition to description: For non-motorized Card Readers which read track data on card exit, then in the circumstance where a call to WFS_CMD_IDC_READ_RAW_DATA is made to read both track data & chip data, then the WFS_ERR_INVALID_DATA error code is returned.

Output Param
LPWFSIDCCARDDATA
*lppCardData;

lppCardData
Pointer to a null-terminated array of pointers to card data structures:

struct _wfs_idc_card_data

{

WORD

wDataSource;

WORD

wStatus;

ULONG

ulDataLength;

LPBYTE

lpbData;

WORD

fwWriteMethod;

} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

wDataSource

Specifies the source of the card data as one of the following flags:

Value
Meaning

WFS_IDC_TRACK1
lpbData contains data read from track 1.

WFS_IDC_TRACK2
lpbData contains data read from track 2.

WFS_IDC_TRACK3
lpbData contains data read from track 3.

WFS_IDC_CHIP
lpbData contains ATR data read from the chip.

WFS_IDC_SECURITY
lpbData contains the value returned by the security module.

WFS_IDC_TRACK_WM
lpbData contains data read from the Swedish Watermark track.

wStatus

Status of reading the card data. Possible values are:

Value
Meaning

WFS_IDC_DATAOK
The data is ok.

WFS_IDC_DATAMISSING
The track/chip is blank.

WFS_IDC_DATAINVALID
Change to description: The data contained on the track/chip is invalid. This will typically be returned when lpbData reports WFS_IDC_SEC_BADREADLEVEL or WFS_IDC_SEC_DATAINVAL
WFS_IDC_DATATOOLONG
The data contained on the track/chip is too long.

WFS_IDC_DATATOOSHORT
The data contained on the track/chip is too short.

WFS_IDC_DATASRCNOTSUPP
The data source to read from is not supported by the service provider.

WFS_IDC_DATASRCMISSING
Change to description: The data source to read from is missing on the card or is unable to be read due to a hardware problem, or the module has not been initialised. This will be reported when lpbData reports WFS_IDC_SEC_NODATA, WFS_IDC_SEC_NOINIT or WFS_IDC_SEC_HWERROR
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_SECURITYFAIL
The security module failed reading the cards security sign.

Clarifications for WFS_CMD_IDC_RESET

Input Param
LPWORD
 lpwResetIn;

If this value lpwResetIn is NULL the service provider will determine where to move any card found.

Events
Change to description:
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:
Value
Meaning

WFS_SRVE_IDC_MEDIADETECTED
This event is generated when a media is detected during a reset.
WFS_SRVE_IDC_MEDIAREMOVED
The card has been taken by the user.

WFS_USRE_IDC_RETAINBINTHRESHOLD
The retain bin reached a threshold value.

Clarifications for WFS_CMD_IDC_CHIP_POWER

Description
Change to description:
This command handles the power actions that can be done on the chip.

For user chips, this command is only used for user chips after the chip has been contacted for the first time using the WFS_CMD_IDC_READ_RAW_DATA command.

For permanently connected chip cards, this command is the only way to control the chip power for permanently connected chip cards.

Clarifications for WFS_SRVE_IDC_MEDIAREMOVED

Description
This service event specifies that the inserted card was manually removed by the user during the processing of a read/write command, during the processing of a chip_io/power command, during or after a retain/reset operation, after an eject operation, or after the card is removed by the user in a latched DIP card unit.

Clarifications for WFS_SRVE_IDC_MEDIADETECTED

The event parameter is changed from (LPWORD *) to (LPWORD) so that the description reads:

Event Param
LPWORD *
lpwResetOut;

Clarifications for Form Description

This section describes the forms mechanism used to define the tracks to be read or written. Forms are contained in a single file, with one section for each defined form. The name of each section is the form name parameter in the WFS_CMD_IDC_READ_TRACK and WFS_CMD_IDC_WRITE_TRACK commands.

The way to specify the location of a form file is vendor dependent.

As an example the following registry information can be used:

WOSA/XFS_ROOT

FORMS

IDCU

formfile=<path><filename>

The read form defines which tracks should be read in the WFS_CMD_IDC_READ_TRACK command and what the response should be to a read failure. The read form can also be used to define logical track data, i.e. fields like “account number,” “issuer identifier,” and their position within the physical track data. For example, the output parameter of the WFS_CMD_IDC_READ_TRACK command with input parameter lpstrFormName = READTRACK3GERMAN could look like (see example 1 below):

"TRACK3:MII=59\0COUNTRY=280\0ISSUERID=50050500\0ACCOUNT=1234567890\0LUHNT3=1\0EXPIRATION=9912\0SECURE=1\0\0\0"

The write form defines which track is to be written, the logical track data that is handed over in the WFS_CMD_IDC_WRITE_TRACK command, and how the write data is to be converted to the physical data to be written.

Reserved Keywords/Operands

Meaning

[]
form name delimiters

TRACK1
keyword to identify track 1

TRACK2
keyword to identify track 2

TRACK3
keyword to identify track 3

FIELDSEPT1
value of field separator of track 1

FIELDSEPT2
value of field separator of track 2

FIELDSEPT3
value of field separator of track 3

READ
description of read action; the TRACKn keywords are processed left to right

WRITE
description of write action

ALL
read or write the complete track

SECURE
do the security check via the security module (CIM86 or MM). This check is done on Track 3 only
Notes

It is valid to define a field that spans another field separator, e.g. FIELDSEPPOS1+1, FIELDSEPPOS3+1 is valid as is FIELDSEPPOS3-4, FIELDSEPPOS3-1 where a field separator (e.g. FIELDSEPPOS2) lies within this range on the data read from the card. During a read track the field separator is returned within the track data. During a write track the application must ensure the correct number of field separators at the correct location with the correct spacing is included in the data, otherwise an WFS_ERR_IDC_DATASYNTAX error will be returned.

Clarifications for guidance on the roles and responsibilities of an application in EMV:
· EMV Level 2 interaction is handled above the XFS API
· EMV Level 1 interaction is handled below the XFS API
All EMV status information that is defined as a Level 1 responsibility in the EMV specification should be handled below the XFS API.

Clarifications for the C_Header file

/* values of WFSIDCCAPS.fwReadTracks, WFSIDCCAPS.fwWriteTracks,

 WFSIDCCARDDATA.wDataSource,

 WFSIDCCAPS.fwChipProtocols, WFSIDCCAPSfwWriteMode,
 WFSIDCCAPS.fwChipPower */

#define WFS_IDC_NOTSUPP 0x0000

/* values of WFSIDCCAPS.fwReadTracks, WFSIDCCAPS.fwWriteTracks,

 WFSIDCCARDDATA.wDataSource,

 WFS_CMD_IDC_READ_RAW_DATA */

#define WFS_IDC_TRACK1 0x0001

#define WFS_IDC_TRACK2 0x0002

#define WFS_IDC_TRACK3 0x0004

/* further values of WFSIDCCARDDATA.wDataSource(except

 WFS_IDC_FLUXINACTIVE), WFS_CMD_IDC_READ_RAW_DATA */

#define WFS_IDC_CHIP 0x0008

#define WFS_IDC_SECURITY 0x0010

#define WFS_IDC_FLUXINACTIVE 0x0020

#define WFS_IDC_TRACK_WM 0x8000

/* values of WFSIDCCAPS.fwWriteMode; WFSIDCWRITETRACK.fwWriteMethod, WFSIDCCARDDATA.fwWriteMethod */

/* Note: WFS_IDC_UNKNOWN is an invalid value and must not be used by

 applications or service providers. This value will be removed in the

 next major XFS release */

#define WFS_IDC_UNKNOWN 0x0001

#define WFS_IDC_LOCO 0x0002

#define WFS_IDC_HICO 0x0004

#define WFS_IDC_AUTO 0x0008

Cash Dispensers

Class Name

CDM
Clarifications for Section Cash Dispensers

…

If the device is a Cash Recycler then, if cash unit exchanges are required on both interfaces, the exchanges cannot be performed concurrently. An exchange on one interface must be complete (the WFS_CMD_CDM_END_EXCHANGE must have completed) before an exchange can start on the other interface. The WFS_ERR_CDM_EXCHANGEACTIVE error code will be returned if the correct sequence is not adhered to. If the device has recycle units of multiple currencies and/or denominations (including multiple note identifiers associated with the same denomination), then the CDM CIM interface should be used for exchange operations involving these cash units.

The following commands on the CIM interface may affect the CDM counts:

WFS_CMD_CIM_CASH_IN
WFS_CMD_CIM_CASH_IN_END
WFS_CMD_CIM_CASH_IN_ROLLBACK
WFS_CMD_CIM_RETRACT
WFS_CMD_CIM_SET_CASH_IN_UNIT_INFO
WFS_CMD_CIM_END_EXCHANGE
WFS_CMD_CIM_RESET
Clarifications for WFS_INF_CDM_STATUS

Output Param

fwDispenser
Supplies the state of the dispenser’s logical cash units as one of the following values:

Value
Meaning

WFS_CDM_DISPOK
All cash units present are in a good state.

WFS_CDM_DISPCUSTATE
The dispenser is may be operational, but one or more of the cash units is in a low, empty, or inoperative or manipulated condition. Items can still be dispensed from at least one of the cash units.

WFS_CDM_DISPCUSTOP
Due to a cash unit failure dispensing is impossible. The dispenser is may be operational, but no items can be dispensed because all of the cash units are in an empty, or inoperative or manipulated condition. This state also occurs when a reject/retract cash unit is full or no reject/retract cash unit is present, or an application lock is set on every cash unit.

WFS_CDM_DISPCUUNKNOWN
Due to a hardware error or other condition, the state of the cash units cannot be determined.

lppPositions
…
fwTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:

Clarifications for WFS_INF_CDM_CAPABILITIES

Output Param

fwRetractAreas

Specifies the area to which items may be retracted. If the device does not have a retract capability this field will be WFS_CDM_RA_NOTSUPP. Otherwise this field will be set to as a combination of the following flags:

Value
Meaning

WFS_CDM_RA_RETRACT
The items may be retracted to the retract cash unit.

WFS_CDM_RA_TRANSPORT
The items may be retracted to the transport.

WFS_CDM_RA_STACKER
The items may be retracted to the intermediate stacker.

WFS_CDM_RA_REJECT
The items may be retracted to the reject cash unit.

WFS_CDM_RA_NOTSUPP
The CDM does not have the ability to retract.

fwRetractTransportActions

Specifies the actions which may be performed on items which have been retracted to the transport. If the device does not have the capability to retract from the transport this value will be WFS_CDM_NOTSUPP. This field will be a combination of the following flags:

Value
Meaning

WFS_CDM_PRESENT
The items may be presented.

WFS_CDM_RETRACT
The items may be retracted to a retract cash unit.

WFS_CDM_REJECT
The items may be rejected to a reject bin.

WFS_CDM_NOTSUPP
The CDM does not have the ability to retract from the stacker.

fwRetractStackerActions

Specifies the actions which may be performed on items which have been retracted to the transport. If the device does not have the capability to retract from the stacker, this value will be WFS_CDM_NOTSUPP. Otherwise this field will be a combination of the following flags:

Value
Meaning

WFS_CDM_PRESENT
The items may be presented.

WFS_CDM_RETRACT
The items may be retracted to a retract cash unit.

WFS_CDM_REJECT
The items may be rejected to a reject bin.

WFS_CDM_NOTSUPP
The CDM does not have the ability to retract from the transport.

Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

Description
This command is used to obtain information regarding the status and contents of the cash units in the CDM.
…
Threshold Events

The threshold event WFS_USRE_CDM_CASHUNITTHRESHOLD can be triggered either by hardware sensors in the device or by the ulCount reaching the ulMinimum or ulMaximum value.

The application can check if the device has this capability by querying the bHardwareSensors field of the physical cash unit structure. If any of the physical cash units associated with the logical cash unit have this capability, then threshold events based on hardware sensors can be triggered.
Description
Change to description:

It is also possible that multiple logical cash units may be associated with one physical cash unit. This should only occur if the physical cash unit is capable of handling this situation, in other words if it can store multiple denominations and report meaningful count and replenishment information for each denomination or if it can store retracted and rejected items as separate logical units and report meaningful count and replenishment information for each of them. In this case the information returned in lpCashUnitInfo will again reflect the number of logical cash units in the CDM.

Logical Types

A cash unit may have a logical type. A logical type is based on the value of the following fields of the WFSCDMCASHUNIT structure:

lpszCashUnitName

Exchanges

If a physical cash unit is inserted (including removedal followed by a reinsertion) when the device is not in the exchange state the status usStatus of the physical cash unit will be set to WFS_CDM_STATCUMANIP and the values of the physical cash unit prior to its’ removal will be returned in any subsequent WFS_INF_CDM_CASH_UNIT_INFO command.

…

On recycling and retract units the counts and status reflect the physical status of the cassette and are therefore consistently reported on both the CDM and CIM interfaces. When a value is changed through an exchange on one interface it is also changed on the other.

Output Param
…

usType
Type of cash unit. Possible values are:

Value
Meaning

…
...

WFS_CDM_TYPEREJECTCASSETTE
Reject cash unit. This type will also indicate a combined reject/retract cash unit.
ulInitialCount
Initial number of items contained in the cash unit. This value is persistent. If the cash unit is a recycle cash unit then this value will be incremented as a result of a Cash-In operation.

ulMinimum
This field is not applicable to Retract and Reject Cash Units. For all other cash units, when ulCount reaches this value the threshold event WFS_USRE_CDM_CASHUNITTHRESHOLD (WFS_CDM_STATCULOW) will be generated. If this value is non-0 then hardware sensors in the device do not trigger threshold events. If this value is zero then hardware sensors may trigger threshold events.
ulMaximum
This field is only applicable to Retract and Reject Cash Units. When ulCount reaches this value the threshold event WFS_USRE_CDM_CASHUNITTHRESHOLD(WFS_CDM_STATCUHIGH) will be generated. If this value is non-0 then hardware sensors in the device do not trigger threshold events. If this value is zero then hardware sensors may trigger threshold events.

ulCount
The number of items inside all the physical cash units associated with this cash unit, plus any items from these physical cash units not yet presented to the customer. This count is only decremented when the items are either presented to the known to be in customer access or successfully rejected.
If the cash unit is a recycle cash unit then this value will be incremented as a result of a Cash-In operation.
Note that for a reject cash unit, this value is unreliable, since the typical reason for dumping items to the reject cash unit is a suspected count failure. For a retract cash unit (i.e. fwType is WFS_CDM_TYPERETRACTCASSETTE) this value specifies the number of retract operations.(CDM commands, CIM commands and error recovery) which result in items entering the cash unit.
If this value reaches 0 it will not decrement further but will remain at 0. This value is persistent.

ulRejectCount
The number of items from this cash unit which are in the reject bin, and which have not been accessible to a customer. This value may be unreliable, since the typical reason for dumping items to the reject cash unit is a suspected pick failure. For reject and retract cash units (usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE) this parameter does not apply and will be reported as zero. This value is persistent.
bAppLock
This field does not apply to reject or retract cash units. If this value is TRUE items cannot be dispensed from the cash unit. If this value is TRUE and the application attempts to dispense from the cash unit a WFS_EXEE_CDM_CASHUNITERROR event will be generated and a WFS_ERR_CDM_CASHUNITERROR code will be returned. This value is persistent.
usStatus
Supplies the status of the cash unit as one of the following values:

Value
Meaning

…

WFS_CDM_STATCUFULL
The cash unit is full. This value only applies to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
WFS_CDM_STATCUHIGH
The cash unit is almost full (i.e. nearingreached or exceeded the threshold defined by ulMaximum). This value only applies to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
WFS_CDM_STATCULOW
The cash unit is almost empty (i.e. nearingreached or below the threshold defined by ulMinimum). This value does not apply to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.

WFS_CDM_STATCUEMPTY
The cash unit is empty. This does not apply to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
WFS_CDM_STATCUMANIP
The cash unit has been changed inserted (including removal followed by a reinsertion) when the device was not in the exchange state. This cash unit cannot be dispensed from.

…

lppPhysical.ulCount
Actual count of items in the physical cash unit. This count is decremented whenever a bill an item leaves the physical cash unit for any reason. This count may be incremented if the cash unit is a recycle cash unit. If the cash unit is a recycle cash unit then this value will be incremented as a result of a Cash-In operation. If this value reaches 0 it will not decrement further but will remain at 0. This value is persistent.

usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value
Meaning

…

WFS_CDM_STATCUFULL
The cash unit is full. This value only applies to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
WFS_CDM_STATCUHIGH
The cash unit is almost full (reached or exceeded the threshold defined by ulMaximum). This value only applies to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
WFS_CDM_STATCULOW
The cash unit is almost empty (threshold defined by ulMinimum). This value does not apply to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
WFS_CDM_STATCUEMPTY
The cash unit is empty. This value does not apply to cash units where usType is WFS_CDM_TYPEREJECTCASSETTE or WFS_CDM_TYPERETRACTCASSETTE.
…

WFS_CDM_STATCUMISSING
The cash unit is missing. (The cash unit has been removed and is physically not present in the machine)
…

WFS_CDM_STATCUMANIP
The cash unit has been changed inserted (including removal followed by a reinsertion) when the device was not in the exchange state. This cash unit cannot be dispensed from.

Clarifications for WFS_INF_CDM_MIX_TYPES

Output Param
usSubType
Contains a vendor-defined number that identifies the type of algorithm or table. Individual vendor-defined mix algorithms are defined above hexadecimal 7FFF. Mix algorithms which are provided by the service provider are in the range hexadecimal 8000 - 8999. Application defined mix algorithms start at hexadecimal 9000. All numbers below 8000 hexadecimal are reserved. If usMixType is WFS_CDM_MIXTABLE, this value will be zero. Predefined values are:
Value
Meaning

WFS_CDM_MIX_MAXIMUM_NUMBER_OF_CASH_UNITS
The denomination will be selected based upon criteria which ensures the maximum number of different value items are dispensed logical cash units are used.

Clarifications for WFS_INF_CDM_PRESENT_STATUS

Description
This command is used to obtain the status of the most recent attempt to present items to the customer transaction. The items may have been dispensed and/or presented as a result of the WFS_CMD_CDM_PRESENT or A customer transaction starts with a WFS_CMD_CDM_DISPENSE command and completes when the items are presented to the customer, or the transaction is cancelled by calling a command such as WFS_CMD_CDM_REJECT. A customer transaction may include multiple WFS_CMD_CDM_DISPENSE commands. Commands during the customer transaction may cause this status to change.

Other commands which can dispense items such as WFS_CMD_CDM_TEST_CASH_UNITS do not update this status.
This value is persistent and is valid until the next time an attempt is made to present or dispense items to the customer.

The denominations reported by this command may not accurately reflect the operation if the cash units have been re-configured (e.g if the values associated with a cash unit are changed, or new cash units are configured).

Output Param
lpDenomination
Pointer to a WFSCDMDENOMINATION structure which contains the amount dispensed and the number of items dispensed from each cash unit. For a description of the WFSCDMDENOMINATION structure see the definition of the command WFS_CMD_CDM_DENOMINATE.

Where mixed currencies were dispensed the ulAmount field in the returned denomination structure will be 0 and the cCurrency field will be set to three ASCII 0x20 characters.

wPresentState
Supplies the status of the last dispense or present operation. Possible values are:

Value
Meaning

WFS_CDM_NOTPRESENTED
The customer didhas not havehad access to the items.

Error Codes
Only the generic error codes defined in [Ref. 1] can be generated by this command.
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_EXCHANGEACTIVE
The CDM is in an exchange state.

Clarifications for WFS_CMD_CDM_DENOMINATE

Description
Change to description:

This command can be used in four different ways:

2. In order to validate that a given amount matches a given denomination and that it is possible to dispense the denomination. The input parameters to the command should be amount, currency and denomination, with a mix number of WFS_CDM_INDIVIDUAL.

Input Param
usCount
The size of the lpulValues list. This usCount is the same as the usCount returned from the last WFS_INF_CDM_CASH_UNIT_INFO command or set by the last WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CDM_END_EXCHANGE commands. If this value is not required because a mix algorithm is used then the usCount can be set to zero.

If the application passes in an invalid usCount the Service Provider should return a WFS_ERR_INVALID_DATA return code.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:
Value
Meaning

WFS_ERR_CDM_INVALIDTELLERID
Invalid Teller ID. This error will never be generated by a Self-Service CDM.
WFS_ERR_CDM_INVALIDDENOMINATION
The usMixNumber is WFS_CDM_INDIVIDUAL and the sum of the values for cashbox ulCashBox and denomination was greater than the items specified by lpulValues does not match the non-zero amount specified.

Clarifications for WFS_CMD_CDM_DISPENSE

Description
...

If bPresent is set to TRUE and a shutter exists, then it will be implicitly controlled during the present operation, even if the bShutterControl capability is set to FALSE. The shutter will be closed when the user removes the items or the items are retracted.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:
Value
Meaning

WFS_ERR_CDM_INVALIDTELLERID
Invalid Teller ID. This error will never be generated by a Self-Service CDM.
WFS_ERR_CDM_INVALIDDENOMINATION
The usMixNumber is WFS_CDM_INDIVIDUAL and the sum of the values for cashbox ulCashBox and denomination was greater than the items specified by lpulValues does not match the non-zero amount specified.

WFS_ERR_CDM_SAFEDOOROPEN
The safe door is open. This device requires the safe door to be closed in order to perform this operation.
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

WFS_EXEE_CDM_NOTEERROR
A notes An item detection error has occurred.
…

WFS_ERR_CDM_SHUTTEROPEN
The Service Provider cannot dispense items with an open output shutter.

If the bPresent field of the WFSCDMDISPENSE structure is TRUE, the following error codes can also be returned:
…
WFS_ERR_CDM_SHUTTEROPEN
The shutter is open when it should be closed. No items presented.

Clarifications for WFS_CMD_CDM_COUNT

usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value
Meaning

WFS_CDM_STATCUHIGH
The cash unit is almost full (reached or exceeded the threshold defined by ulMaximum).

WFS_CDM_STATCULOW
The cash unit is almost empty (reached or below threshold defined by ulMinimum).

WFS_CDM_STATCUMANIP
The cash unit has been changed inserted (including removal followed by a reinsertion) when the device was not in the exchange state. This cash unit cannot be dispensed from.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_SAFEDOOROPEN
The safe door is open. This device requires the safe door to be closed in order to perform this operation.
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

WFS_EXEE_CDM_NOTEERROR
An item detection error has occurred.

Clarifications for WFS_CMD_CDM_PRESENT

Description
This command will move items to the exit position for removal by the user.

If a shutter exists, then it will be implicitly controlled during the present operation, even if the bShutterControl capability is set to FALSE. The shutter will be closed when the user removes the items or the items are retracted. If fwPosition is set to WFS_CDM_POSNULL the position set in the WFS_CMD_CDM_DISPENSE command which caused these items to be dispensed will be used.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_UNSUPPOSITION
The position specified is not supported.

Clarifications for WFS_CMD_CDM_REJECT

Description
This command will move items from the intermediate stacker and transport to the reject cash unit (i.e. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE). The ulCount parameter of the reject cash unit is incremented by the number of items that were thought to be present at the time of the reject or the number counted by the device during the reject. Note that the reject bin count is unreliable.

Clarifications for WFS_CMD_CDM_RETRACT

Description
This command will retract items which may have been in customer access. Retracted items will be moved to either a retract cash unit, the reject cash unit, the transport or the intermediate stacker. After the items are retracted the shutter is closed automatically, even if the bShutterControl capability is set to FALSE.

If items are moved to a retract cash unit (i.e. a cash unit with usType WFS_CDM_TYPERETRACTCASSETTE), then the ulCount parameter of the retract cash unit must be incremented by 1 to specify the number of retracts. If items are moved to any other cash unit (e.g. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE), then the ulCount parameter of the cash unit must be incremented by the number of items that were present at the time the WFS_CMD_CDM_RETRACT command was issued or the number counted by the device during the retract. Note that reject bin counts are unreliable.

The bRetract field of the WFSCDMCAPS structure specifies whether or not this command is supported.
Input Param
fwOutputPosition

Specifies the output position from which to retract the bills. Possible values areThe value is set to one of the following values:

Value
Meaning

…
…

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_UNSUPPOSITION
The position specified is not supported.

Events
Addition to list of events which can be generated by this command:

Value
Meaning

WFS_SRVE_CDM_ITEMSTAKEN
The items presented have been removed by the user.

Clarifications for WFS_CMD_CDM_SET_CASH_UNIT_INFO

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_INVALIDTELLERID
Invalid Teller ID. This error will never be generated by a Self-Service CDM.
WFS_ERR_CDM_INVALIDCASHUNIT
Invalid cash unit ID.

Clarifications for WFS_CMD_CDM_START_EXCHANGE

Description
Change to description:
This command puts the CDM in an exchange state, i.e. a state in which cash units can be emptied, replenished, removed or replaced. Other than the updates which can be made via the WFS_CMD_CDM_SET_CASH_UNIT_INFO command (see Section 4.11) all changes to a cash unit must take place while the cash unit is in an exchange state.
In the case of self-configuring cash units which are designed to be replaced with no operator intervention the application should use some trigger to initiate an exchange state when appropriate. For instance, the WFS_SRVE_SAFE_DOOR_OPEN event could trigger the application to call WFS_CMD_CDM_START_EXCHANGE.

This command returns current cash unit information in the form described in the documentation of the WFS_INF_CDM_CASH_UNIT_INFO command. This command will also initiate any physical processes which may be necessary to make the cash units accessible. Before using this command an application should first have ensured that it has exclusive control of the CDM.

This command may return WFS_SUCCESS even if WFS_EXEE_CDM_CASHUNITERROR events are generated. If this command returns WFS_SUCCESS or WFS_ERR_CDM_EXCHANGE_ACTIVE the CDM is in an exchange state.

Once in an exchange state the CDM will only respond to the following commands:
While in an exchange state the CDM will process all WFS requests, excluding WFS[Async]Execute commands other than those listed below:

symbol 183 \f "Symbol" \s 10 \h
WFS_CMD_CDM_END_EXCHANGE

symbol 183 \f "Symbol" \s 10 \h
Any WFS[Async]GetInfo commands

symbol 183 \f "Symbol" \s 10 \h
WFSClose – this will end the exchange state

· WFS_CMD_CDM_SET_MIX_TABLE
Any other WFS[Async]Execute commands will result in the error WFS_ERR_CDM_EXCHANGEACTIVE being generated

…

In the case of a recycler, the cash-in cash unit counts are set via the CIM interface and the cash-out cash unit counts are set via the CDM interface. Recycling cash units can be set via either interface. However, if the device has recycle units of multiple currencies and/or denominations (including multiple note identifiers associated with the same denomination), then the CIM interface should be used for exchange operations involving these cash units. Those fields which are not common to both the CDM and CIM cash units are left unchanged when an exchange (or WFS_CMD_XXX_SET_CASH_UNIT_INFO) is executed on the other interface. For example, if the CIM interface is used to set the current count of notes in the cash unit the CDM ulRejectCount field is not changed. Or, if the CDM is used to set the current counts then the CIM lpNoteNumberList structure is not changed even if the data becomes inconsistent
Events
In addition to the generic events defined in [Ref. 1] the following events can be generated by this command:

Value
Meaning

WFS_EXEE_CDM_CASHUNITERROR
An error occurred while performing the exchange. A cash unit caused an error.
Clarifications for WFS_CMD_CDM_END_EXCHANGE

Description
…

When lpCUInfo is not NULL, theThe input parameters to this command may be ignored if the service provider can obtain cash unit information from self-configuring cash units.

If the fields ulCount, and ulRejectCount of lppPhysical are set to zero by this command, the application is indicating that it does not wish counts to be maintained for the physical cash units. Counts on the logical cash units will still be maintained and can be used by the application. If the physical counts are set by this command then the logical count will be the sum of the physical counts and any value sent as a logical count will be ignored.

If an error occurs during the execution of this command, the application must issue WFS_INF_CDM_CASH_UNIT_INFO to determine the cash unit information.
A WFS_EXEE_CDM_CASHUNITERROR event will be sent for any logical cash unit which cannot be successfully updated. If no cash units could be updated then a WFS_ERR_CDM_CASHUNITERROR code will be returned and WFS_EXEE_CDM_CASHUNITERROR events generated for every logical cash unit that could not be updated.

Even if this command does not return WFS_SUCCESS the exchange state has ended.

The values set by this command are persistent.

Input Param
LPWFSCDMCUINFO
lpCUInfo;

The WFSCDMCUINFO structure is specified in the documentation for the WFS_INF_CDM_CASH_UNIT_INFO command. This pointer can be NULL if the cash unit information has not changed. Otherwise the parameter If this parameter is not NULL then it must contain the complete list of cash unit structures, not just the ones that have changed. If this parameter is NULL then any cash unit in a manipulated state (i.e. usPStatus value of WFS_CDM_STATCUMANIP) will remain in this state after the command completes.

The usStatus and usPStatus values passed in the cash unit structures included within the lpCUInfo parameter are ignored and the actual status of the cash units is determined when this command is executed. When lpCUInfo is not NULL and this command is successfully executed cash units will no longer be in a manipulated state (i.e. usPStatus will no longer be WFS_CDM_STATCUMANIP).

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_INVALIDTELLERID
Invalid Teller ID.

WFS_ERR_CDM_CASHUNITERROR
This error is returned if there is a problem with the values set for a cash unit. A cash unit problem occurred that meant no cash units could be updated. One or more WFS_EXEE_CDM_CASHUNITERROR event will be posted with the details.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_EXEE_CDM_CASHUNITERROR
The values of the cash unit structures are incorrect. The cash unit structure that is incorrect is returned as a parameter on this event. A cash unit caused an error.
WFS_EXEE_CDM_NOTEERROR
A notes detection error has occurred.

Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

Output Param
usNumOfBills
Number of items that were actually dispensed during the calibration process. This value may be different from that passed in using the input structure if the cash dispenser always dispenses a default number of bills. When bills are dispensed to an output position this is the count of notes presented to the output position, any other notes rejected during the calibration process are not included in this count as they will be accounted for within the cash unit counts.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_INVALIDCASHUNIT
The cash unit number specified is not valid.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_EXEE_CDM_NOTEERROR
A notes detection error has occurred.

Clarifications for WFS_CMD_CDM_SET_MIXTABLE

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_EXCHANGEACTIVE
The CDM is in an exchange state..

Clarifications for WFS_CMD_CDM_RESET

Description
This command is used by the application to perform a hardware reset which will attempt to return the CDM device to a known good state. This command does not over-ride a lock obtained through WFS[Async]Lock on another application or service handle, nor can it be performed while the CDM is in the exchange state.

…

On a recycling device, this command is not accepted if a cash-in transaction is active and will return a WFS_ERR_DEV_NOT_READY error.

If items are moved to a retract cash unit (i.e. a cash unit with usType WFS_CDM_TYPERETRACTCASSETTE), then the ulCount parameter of the retract cash unit must be incremented by 1 to specify the number of operations that changed the count. If items are moved to any other cash unit (e.g. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE), then the ulCount parameter of the cash unit must be incremented either by the number of items that were present at the time the WFS_CMD_CDM_RESET command was issued or the number counted by the device during the WFS_CMD_CDM_RESET command. Note that reject bin counts are unreliable.
Input Param
The sentence at the end of the Input Param description should read:
If the application does not wish to specify a cash unit or position it can set lpResetIn this value to NULL.
Events
Addition to list of events which can be generated by this command:

Value
Meaning

WFS_SRVE_CDM_ITEMSTAKEN
The items presented have been removed by the user.

Clarifications for WFS_CMD_CDM_TEST_CASH_UNITS

Description
Change of description:
This command is used to test cash units following replenishment. All physical cash units are tested that which are testable (i.e. have a status WFS_CDM_STATCUOK or WFS_CDM_STATCULOW and no application lock in the logical cash unit associated with the physical cash unit) are tested. If the hardware is able to do so tests are continued even if an error occurs while testing one of the cash units. The command completes with WFS_SUCCESS if the Service Provider successfully manages to test all of the testable Cash Units which are low or ok regardless of the outcome of the test. This is the case if all testable the cash units could be tested and a dispense was possible from at least one of the cash units. WFS_EXEE_CDM CASHUNITERROR events are sent for every cash unit where the test failed .

A WFS_EXEE_CDM_CASHUNITERROR event will be sent for any logical cash unit which has one or more physical cash units which can not be tested or which fail the test, even if the logical cash unit has other physical cash units which are successfully tested. If all he cash units could not be tested or no cash units are testable then a WFS_ERR_CDM_CASHUNITERROR code will be returned and WFS_EXEE_CDM_CASHUNITERROR events generated for every logical cash unit.

The operation performed to test the cash units is vendor dependent. Items may be dispensed or transported into the reject bin as a result of this command.

This command cannot be used to test cash units which have been locked by the application. A WFS_ERR_CDM_CASHUNITERROR code will be returned and WFS_EXEE_CDM_CASHUNITERROR events generated.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CDM_CASHUNITERROR
A cash unit caused a problem or the cash unit could not be tested that meant all cash units could not be tested or no cash units were testable. A One or more WFS_EXEE_CDM_CASHUNITERROR events will be posted with the details.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

…
…

WFS_SRVE_CDM_CASHUNITINFOCHANGED
A cash unit was updated as a result of this command.

WFS_EXEE_CDM_CASHUNITERROR
A cash unit has failed the test or a
cash unit could not be tested because it is inoperative, empty or locked was not testable.

WFS_EXEE_CDM_NOTEERROR
A notes detection error has occurred.

Clarifications for WFS_USRE_CDM_CASHUNITTHRESHOLD

Description
This user event is generated when a threshold condition has occurred in one of the cash units. If the cash unit is a shared cash unit in a compound CDM and CIM device then this event can also be generated as a result of a CIM operation.
Clarifications for WFS_SRVE_CDM_CASHUNITINFOCHANGED

Description
Change to description:
This service event is generated when information about a physical or logical cash unit has changed. For instance, a physical cash unit may have been removed or inserted. This event will also be posted on successful completion of the for every cash unit changed in any way (including changes in ulCount and ulRejectCount) as a result of the following commands:

WFS_CMD_CDM_SET_CASH_UNIT_INFO

WFS_CMD_CDM_END_EXCHANGE

This event will also be fired when any change is made to a cash unit by the following commands, except for changes to ulCount or ulRejectCount, or if the WFS_USRE_CDM_CASHUNITTHRESHOLD is more appropriate:

WFS_CMD_CDM_CALIBRATE_CASH_UNIT

WFS_CMD_CDM_TEST_CASH_UNITS

If the cash unit is a shared cash unit in a compound CDM and CIM device then this event can also be generated as a result of a CIM operation.
When a physical cash unit is removed, the status of the physical cash unit becomes WFS_CDM_STATCUMISSING. If there are no physical cash units of the same logical type remaining the status of the logical type becomes WFS_CDM_STATCUMISSING.

When a physical cash unit is inserted and this physical cash unit is of an existing logical type, both the logical and the physical cash unit structures will be updated.

If a physical cash unit of a new logical type is inserted, the usNumber of the changed cash unit structure pointed to by lpCashUnit the cash unit structure reported by the last WFS_INF_CDM_CASH_UNIT_INFO command is no longer valid. In that case an application should issue a WFS_INF_CDM_CASH_UNIT_INFO command after receiving this event to obtain updated cash unit information.

Clarifications for WFS_EXEE_CDM_CASHUNITERROR

Description
This execute event is generated if there is a problem with a cash unit during a denominate or dispense operation the execution of a command.

Event Param
wFailure
Specifies the kind of failure that occurred in the cash unit. Values are:

Value
Meaning

WFS_CDM_CASHUNITINVALID
Specified cash unit ID is invalid.

Clarifications for WFS_SRVE_CDM_ITEMSTAKEN

Description
This service event is generated when items presented to the user have been taken. This event may be generated at any time.
Clarifications for WFS_SRVE_CDM_COUNTS_CHANGED

Description
This service event is generated if the device is a compound device together with a CIM and the counts in a shared cash unit have changed as a result of a cash-in any CIM operation other than WFS_CMD_CIM_SET_CASH_UNIT_INFO and WFS_CMD_CIM_END_EXCHANGE.

Clarifications for WFS_EXEE_CDM_NOTEERROR

Description
This execute event specifies the reason for a notes detection error during the execution of a command. an exchange or dispense operation.
Event Param
LPUSHORT
lpusReason;

lpusReason
Specifies the reason for the notes detection error. Possible values are:.

Value
Meaning

WFS_CDM_INCORRECTCOUNT
A bill An item counting error has occurred.

Clarifications for Rules for Cash Unit Exchange

The XFS Start and End Exchange commands should be used by applications to supply the latest information with regards to cash unit replenishment state and content. This guarantees a certain amount of control to an application as to which denominations are stored in which position as well as the general physical state of the logical/physical cash units.

If a cash unit is removed from the CDM outside of the Start/End Exchange operations and subsequently reinserted, the status of the physical cash unit should be set to WFS_CDM_STATCUMANIP to indicate to the application that the physical cash unit has been removed, reinserted and possibly tampered with. While the cash unit has this status the Service Provider should not attempt to use it as part of a Dispense operation. The WFS_CDM_STATCUMANIP status should not change until the next Start/End Exchange operation is performed, even if the cash unit is replaced in its original position.

If all the physical cash units belonging to a logical cash unit are manipulated the parent logical cash unit that the physical cash units belong to should also have its status set to WFS_CDM_STATCUMANIP.

When a cash unit is removed and/or replaced outside of the Start/End Exchange operations the original logical cash unit information such as the values, currency and counts should be preserved in the Cash Unit Info structure reported to the application for accounting purposes until the next Start/End Exchange operations, even if the cash unit physically contains a different denomination.

Clarifications for C-Header File

/* values of WFSCDMDISPENSE.fwPosition */

/* values of WFSCDMCAPS.fwPositions */

/* values of WFSCDMOUTPOS.fwPosition */

/* values of WFSCDMTELLERPOS.fwPosition */

/* values of WFSCDMTELLERDETAILS.fwOutputPosition */

/* values of WFSCDMPHYSICALCU.fwPosition */

#define WFS_CDM_POSNULL (0x0000)

#define WFS_CDM_POSLEFT (0x0001)

#define WFS_CDM_POSRIGHT (0x0002)

#define WFS_CDM_POSCENTER (0x0004)

#define WFS_CDM_POSTOP (0x0040)

#define WFS_CDM_POSBOTTOM (0x0080)

#define WFS_CDM_POSREJECT (0x0100)

#define WFS_CDM_POSFRONT (0x0800)

#define WFS_CDM_POSREAR (0x1000)

/* additional values of WFSCDMPHYSICALCU.fwPosition */

#define WFS_CDM_POSREJECT (0x0100)

Personal Identification Number Keypads (PIN Pads)

Class Name

PIN
Clarifications for Section 2. Personal Identification Number Keypads

Addition to description:
When hex values are passed to the API within strings, the hex digits 0xa to 0xf can be represented by characters in the ranges ‘a’ to ‘f’ or ‘A’ to ‘F’.
Clarifications for Section 3. References

Added reference:

	17. PCI PIN Transaction Security (PTS) Point of Interaction (POI) version 6.1

Clarifications for WFS_INF_PIN_CAPABILITIES

Output Param

fwAlgorithms
Supported encryption modes; a combination of the following flags:

Value
Meaning

WFS_PIN_CRYPTTRIDESMAC
Change to description: Last Block Triple DES MAC as defined in ISO/IEC 9797-1:1999, using: block length n=64, Padding Method 1 (when bPadding=0), MAC Algorithm 3, MAC length m where 32<=m<=64.
fwPinFormats
Supported PIN formats; a combination of the following flags:

Value
Meaning

WFS_PIN_FORMISO0
Change to description: PIN is preceded by 0x00 and the length of the PIN (0x04 to 0x0C), filled with padding character 0x0F to the right, PIN length 4-12 digits, XORed with PAN (Primary Account Number without check number, no minimum length specified, missing digits are filled

fwPresentationAlgorithms
Supported presentation algorithms; a combination of the following flags:

Value
Meaning

WFS_PIN_PRESENT_CLEAR
Change to description: Algorithm for the presentation of a clear text PIN to a chipcard. Each digit of the clear text PIN is inserted as one nibble (=halfbyte) into lpbChipData. See WFS_CMD_PIN_PRESENT_IDC for a detailed description.
bIDConnect
Change to description: Specifies whether the PIN pad is directly physically connected to the ID card unit. The value of this parameter is either TRUE or FALSE. If TRUE the PIN will be transported securely during the command WFS_CMD_PIN_PRESENT_IDC.

fwIDKey
Change to description: Specifies if key owner identification (in commands referenced as lpxIdent), which authorizes access to the encryption module, is required. A zero value is returned if the encryption module does not support this capability. Otherwise it will be a combination of the following flags:
Value
Meaning

WFS_PIN_IDKEYINITIALIZATION
Change to description: ID key is returned by the WFS_CMD_PIN_INITIALIZATION command.
WFS_PIN_IDKEYIMPORT
Description changed to read: ID key is required as input for the WFS_CMD_PIN_IMPORT_KEY and WFS_CMD_PIN_DERIVE_KEY command.
fwKeyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key value. The modes available for each key may depend on security requirements of the algorithm (for example, see [Ref. 17]). The algorithm (i.e. DES, 3DES, AES, SM4) and use is determined by the algorithm of the key being checked and security requirements. If the key size is larger than the algorithm block size, then only the first block will be used. It can be a combination of the following flags:

Value
Meaning

WFS_PIN_KCVSELF
The key check value (KCV) is created by an encryption of the key with itself.
WFS_PIN_KCVZERO
The key check value is created by encrypting an encryption of the key with a zero value with the key.
lpszExtra
For German HSMs this parameter will contain the following information:

· HSM=<HSM vendor> (can contain the values KRONE,ASCOM,IBM or NCR)

· JOURNAL=<0/1> (0 means that the HSM does not support journaling by the WFS_CMD_PIN_GET_JOURNAL command, 1 means it supports journaling)
Addition to description:
A Service Provider may automatically generate a beep on key presses, this is reported by the following key=value pair:

· AUTOBEEP=<0/1> (0 means no beeps are generated automatically, 1 means beeps are generated automatically)

For devices where the secure PIN keypad is integrated within a generic Win32 keyboard then, if the following pair is present,

· “KYBD=COMBINED_WIN32”

then standard Win32 key events will be generated for any key when there is no ‘active’ GET_DATA or GET_PIN command.

Note that XFS continues to support PIN keys define only, and is not extended to support new alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both PIN and generic keyboards.

· When an application wishes to receive XFS-based key information then he can use the XFS GET_DATA & GET_PIN functions.

· No Win32 keystrokes are generated for any key (active or not) in a combined device when GET_DATA or GET_PIN are ‘active’.

· When no GET_DATA or GET_PIN function is ‘active’ then any key press will result in a Win32 key event. These events can be ignored by the application, if required.

Note that this does not compromise secure PIN entry – there will be no Win32 keyboard events during PIN collection.

This clarification does not impact terminals & kiosks with separate PIN & Win32 keyboards. In this case the Win32 behaves purely as a PC keyboard and the PIN device behaves only as an XFS device.
Clarifications for WFS_INF_PIN_FUNCKEY_DETAIL

Output Param

usNumberFDKs
Change to description: This value indicates the number of FDK structures returned. This number can be less than the number of keys requested, if any keys are not supported. Only supported FDKs are returned.
lppFDKs
Change to description: Pointer to an array of pointers to FDK structures. It is the responsibility of the application to identify the mapping between the FDK code and the physical location of the FDK. lppFDKs is NULL if no FDKs are requested or supported.
usXPosition
Change to description: For FDKs, specifies the screen position the FDK relates to. This position is relative to the Left Hand side of the screen expressed as a percentage of the width of the screen.
For FDKs along the side of the screen this will be 0 (left side) or 100 (right side, user’s view).
usYPosition
Change to description: For FDKs, specifies the screen position the FDK relates to. This position is relative to the top of the screen expressed as a percentage of the height of the screen.
Addition to description: For FDKs above or below the screen this will be 0 (above) or 100 (below).

Clarifications for WFS_INF_PIN_KEY_DETAIL_EX

Output Param

bGeneration
Change to description: Specifies the generation of the key as BCD value. Different generations might correspond to different environments (e.g. test or production environment). The content is vendor specific. Will be 0xff if no such information is available for the key.
bVersion
Change to description: Specifies the version of the key (the year in which the key is valid, e.g. 01 for 2001) as BCD value. Will be 0xff if no such information is available for the key.
Comments
When the PIN encryption module contains a public/private key-pair, only the private part of the key will be reported. Every private key in the PIN encryption module will always have a corresponding public key with the same name. The public key can be exported with WFS_CMD_PIN_EXPORT_EPP_SIGNED_ITEM.
Clarifications for WFS_CMD_PIN_CRYPT

Description
Change to description: Furthermore it can be used for Message Authentication Code generation (i.e. MACing). The input data is padded to the necessary length mandated by the encryption algorithm using the bPadding parameter. Applications can generate a MAC using an alternative padding method by pre-formatting the data passed and combining this with the standard padding method.
Input Param

lpxStartValue
Change to description: DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this parameter is NULL, lpxStartValueKey is used as the Start Value. If lpsStartValueKey is also NULL, the default value for CBC / CFB / MAC is 16 hex digits 0x0. This value is ignored, if wMode equals WFS_PIN_MODERANDOM.

bPadding
Addition to description: The valid range is 0x00 to 0xff.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_ALGORITHMNOTSUPP
Change to description: The specified algorithm is not supported by this key.
WFS_ERR_PIN_KEYNOVALUE
Change to description: The specified key is not loaded. The specified key was found but the corresponding key value has not been loaded.
Clarifications for WFS_CMD_PIN_IMPORT_KEY

Input Param

lpIdent
Change to description: Specifies the key owner identification. It is a handle to the encryption module and is returned to the application in the WFS_CMD_PIN_INITIALIZATION command. See fwIDKey in WFS_INF_PIN_CAPABILITIES for whether this value is required. NULL if not required. The use of this parameter is vendor dependent.
fwUse
Specifies the type of access for which the key can be used as a combination of the following flags:

Value
Meaning

WFS_PIN_USEFUNCTION
Key can be used for PIN functions (PIN block creation and local PIN check).

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_KEYNOTFOUND
Change to description: The specified key encryption key was not found or attempting to delete a non-existent key.

Clarifications for WFS_CMD_PIN_DERIVE_KEY

Description
Change to description: A key is derived from input data using a key generating key and an initialization vector. The input data can be expanded with a fill-character to the necessary length (mandated by the encryption algorithm being used). The derived key is imported into the encryption module and can then be used for further operations.
Input Param

bPadding
Addition to description: The valid range is 0x00 to 0xff.
lpxIdent
Change to description: Specifies the key owner identification. It is a handle to the encryption module and is returned to the application in the WFS_CMD_PIN_INITIALIZATION command. See fwIDKey in WFS_INF_PIN_CAPABILITIES for whether this value is required. NULL if not required. The use of this parameter is vendor dependent.
Clarifications for WFS_CMD_PIN_GET_PIN

Description
Change to description:
This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN digit entries are not passed to the application. For each PIN digit, or any other active key entered, an execute notification event WFS_EXEE_PIN_KEY is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display). The application is not informed of the value entered. The execute notification only informs that a key has been depressed.

Some PIN pad devices do not inform the application as each PIN digit is entered, but locally process the PIN entry based upon minimum PIN length and maximum PIN length input parameters.

When the maximum number of PIN digits is entered and the flag bAutoEnd is true, or a terminate key is pressed after the minimum number of PIN digits is entered, the command completes. If the <Cancel> key is a terminator key and is pressed the command will complete successfully even if the minimum number of PIN digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has been reached) or <Cancel> (can terminate before minimum length is reached). The configuration of this functionality is vendor specific.
If usMaxLen is zero, the service provider does not terminate the command unless the application sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the application must issue a WFSCancel command.

If active the WFS_PIN_FK_CANCEL and WFS_PIN_FK_CLEAR keys will cause the PIN buffer to be cleared. The WFS_PIN_FK_BACKSPACE key will cause the last key in the PIN buffer to be removed.

Terminating keys have to be active keys to operate.

If this command is cancelled by a WFSCancelAsyncRequest or a WFSCancelBlockingCall then PIN buffer is not cleared.
If usMaxLen has been met and bAutoEnd is set to False, then all numeric keys will automatically be disabled. If the CLEAR or BACKSPACE key is pressed to reduce the number of entered keys, the numeric keys will be re-enabled.

If the ENTER key (or FDK representing the ENTER key – note that the association of an FDK to ENTER functionality is vendor specific) is pressed prior to usMinLen being met, then the ENTER key or FDK is ignored. In some cases the pinpad device can not ignore the ENTER key then the command will complete normally. To handle these types of devices the application should use the output parameter usDigits field to check that sufficient digits have been entered. The application can then get the user to re-enter their PIN with the correct number of digits, or continue and generate the Pinblock.

It is the responsibility of the application to identify the mapping between the FDK code and the physical location of the FDK.

Input Param

usMaxLen
Specifies the maximum number of digits which can be entered for the PIN. A value of zero indicates no maximum PIN length verification.
ulActiveFDKs
Change to description: Specifies a mask of those FDKs which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulActiveKeys
Change to description: Specifies a mask of those (other) Function Keys which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).
ulTerminateFDKs
Change to description: Specifies a mask of those FDKs which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateKeys
Change to description: Specifies a mask of those (other) Function Keys which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).
Output Param

wCompletion
Specifies the reason for completion of the entry. Possible values are:

Value
Meaning

WFS_PIN_COMPCONTINUE
Change to description: Input continues, function key was pressed (this value is only used in the execute event WFS_EXEE_PIN_KEY and in the array of keys in the completion of WFS_PIN_CMD_GET_DATA).

WFS_PIN_COMPCONTFDK
Change to description: Input continues, FDK was pressed (this value is only used in the execute event WFS_EXEE_PIN_KEY and in the array of keys in the completion of WFS_PIN_CMD_GET_DATA).

Error Codes
Addition/modification to the error codes generated by this command:

Value
Meaning

WFS_ERR_PIN_MINIMUMLENGTH
The minimum PIN length field is invalid or greater than the maximum PIN length field when the maximum PIN length is not zero.

Clarifications for WFS_CMD_PIN_LOCAL_DES

Description
Change to description: The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the requisite data specified by the DES validation algorithm and locally verified for correctness. . The local DES verification is based on the IBM 3624 standard. The result of the verification is returned to the application. This command will clear the PIN.
Input Param

lpsValidationData
Change to description: Validation data (normally obtained from card track data) used to validate the correctness of the PIN. The validation data should be an ASCII string.

lpsOffset
Change to description: Offset for the PIN block as an ASCII string; if NULL then no offset is used. The characters in the offset data must be in the ranges ‘0’ to ‘9’, ‘a’ to ‘f’ and ‘A’ to ‘F’.

bPadding
Change to description: Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0f, padding is applied after the validation data has been compressed. If the bPadding character is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is compressed.

usMaxPIN
Maximum number of PIN digits to be used for validation. This parameter corresponds to PINMINL in the IBM 3624 specification.
usValDigits
Change to description: Number of Validation digits to be used for validation. This value specifies the number of PIN digits that will be used for validation. This value ensures that any non‑significant digits entered are removed before validation. The minimum permissible value for usValDigits is four. This is the length of the lpsValidationData string.
Comments
None.The PINMAXL value as defined in the IBM 3624 specification is the length of the PIN entered during the WFS_CMD_PIN_GET_PIN command.

Clarifications for WFS_CMD_PIN_CREATE_OFFSET

Description
Change to description: This function is used to generate a PIN Offset that is typically written to a card and later used to verify the PIN with the WFS_CMD_PIN_LOCAL_DES command. The PIN offset is computed by combining validation data with the keypad entered PIN. This command will clear the PIN.
Input Param

lpsValidationData
Change to description: Validation data. The validation data should be an ASCII string.

usMaxPIN
Maximum number of PIN digits to be used for PIN Offset creation. This parameter corresponds to PINMINL in the IBM 3624 specification.

usValDigits
Number of Validation Data digits to be used for PIN Offset creation. This is the length of the lpsValidationData string.
bPadding
Change to description: Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0f, padding is applied after the validation data has been compressed. If the bPadding character is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is compressed.
Comments
The list of ‘forbidden’ PINs (values that cannot be chosen as a PIN, e.g. 1111) is configured in the device in a vendor dependent way during the configuration of the system. The PINMAXL value as defined in the IBM 3624 specification is the length of the PIN entered during the WFS_CMD_PIN_GET_PIN command.
Clarifications for WFS_CMD_PIN_PRESENT_IDC

Input Param

ulPINPointer
Change to description: The byte offset where to start inserting the PIN into lpbChipData. The leftmost byte is numbered 0. See below for an example.

usPINOffset
Change to description: The bit offset within the byte specified by ulPINPointer where to start inserting the PIN. The leftmost bit numbered 0. See below for an example.
Comments
Addition to description:

Example for the use of the algorithm WFS_PIN_PRESENT_CLEAR:

The structure of a VERIFY command for a French B0 chip is:

	Bytes 0 to 4
	Bytes 5 to 8

	CLA
	INS
	A1
	A2
	Lc
	PIN-Block

	0xBC
	0x20
	0x00
	0x00
	0x04
	0xXX 0xXX 0xXX 0xXX

where the 4 byte PIN block consists of 2 bits that are always zero, 16 bits for the 4 PIN digits (each digit being coded in 4 bits) and 14 bits that are always one:

	Byte 5
	Byte 6
	Byte 7
	Byte 8

	0
	0
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	Digit 1
	Digit 2
	Digit3
	Digit 4
	

In order to insert the PIN into such a command, the application calls WFS_CDM_PIN_PRESENT_IDC with

ulChipDataLength
9
lpbChipData
0xBC2000000400003FFF
ulPINPointer
5
usPINOffset
2

For a sample PIN „1234“ the PIN block is:

	Byte 5
	Byte 6
	Byte 7
	Byte 8

	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	Digit 1
	Digit 2
	Digit3
	Digit 4
	

resulting in a chip card command of:

	Bytes 0 to 4
	Bytes 5 to 8

	CLA
	INS
	A1
	A2
	Lc
	PIN-Block

	0xBC
	0x20
	0x00
	0x00
	0x04
	0x04 0x8D 0x3F 0xFF

Clarifications for WFS_CMD_PIN_GET_PINBLOCK

Input Param

lpsCustomerData
Change to description: The customer data should be an ASCII string. Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN. For ANSI and ISO-0 the PAN (Primary Account Number, without the check number) is supplied,
lpsXORData
Change to description: If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to modify the result of the first encryption by an XOR-operation. This parameter is a string of hexadecimal data that must be converted by the application. For example an XOR operation with 0x0123456789ABCDEF the data must be supplied as 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46 and terminated with 0x00. In other words the application would set lpsXORData to “0123456789ABCDEF\0”. The hex digits 0xa to 0xf can be represented by characters in the ranges ‘a’ to ‘f’ or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed. If the formatted PIN is not encrypted twice (i.e. if lpsKeyEncKey is NULL) this parameter is ignored.
bPadding
Addition to description: The valid range is 0x00 to 0x0f. This field is ignored for PIN block formats with fixed, sequential or random padding.

lpsKey
Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is required. If this specifies a double length key, triple DES encryption will be performed. The key referenced by lpsKey must have the WFS_PIN_USEFUNCTION attribute.

lpsKeyEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second encryption required. The key referenced by lpsKeyEncKey must have the WFS_PIN_USEFUNCTION attribute.

Output Param
LPWFSXDATA
lpxPinBlock;

lpxPinBlock
Change to description: Pointer to the encrypted/decrypted data PIN block.
Clarifications for WFS_CMD_PIN_GET_DATA

Description
Change to description:

This function is used to return keystrokes entered by the user. It will automatically set the PIN pad to echo characters on the display if there is a display. For each keystroke an execute notification event is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display).

If usMaxLen is zero, the service provider does not terminate the command unless the application sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the application must issue a WFSCancel command.

If usMaxLen has been met and bAutoEnd is set to False, then all keys or FDKs that add data to the contents of the WFSPINDATA output parameter will automatically be disabled. If the CLEAR or BACKSPACE key is pressed to reduce the number of entered keys below usMaxLen, the same keys will be re-enabled. Where applications want direct control of the data entry and the key interpretation, usMaxLen can be set to 0 allowing the application to provide tracking and counting of key presses until a terminate key or terminate FDK is pressed or WFSCancel has been issued.
Terminating keys have to be active keys to operate.

It is the responsibility of the application to identify the mapping between the FDK code and the physical location of the FDK.

The following keys may effect the contents of the WFSPINDATA output parameter but are not returned in it:

WFS_PIN_FK_ENTER

WFS_PIN_FK_CANCEL

WFS_PIN_FK_CLEAR

WFS_PIN_FK_BACKSPACE

The WFS_PIN_FK_CANCEL and WFS_PIN_FK_CLEAR keys will cause the output buffer to be cleared. The WFS_PIN_FK_BACKSPACE key will cause the last key in the buffer to be removed.
Input Param

bAutoEnd
Change to description: If bAutoEnd is set to true, the service provider terminates the command when the maximum number of digits are entered. Otherwise, the input is terminated by the user using one of the termination keys. When usMaxLen is reached, the service provider will disable all numeric keys. bAutoEnd is ignored when usMaxLen is set to 0.
ulActiveFDKs
Change to description: Specifies a mask of those FDKs which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulActiveKeys
Change to description: Specifies a mask of those (other) Function Keys which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateFDKs
Change to description: Specifies a mask of those FDKs which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateKeys
Change to description: Specifies a mask of those (other) Function Keys which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_NOACTIVEKEYS
Change to description: There are no active function keys specified
Comments
Change to comments: If the triple zero key is pressed one WFS_EXEE_PIN_KEY event is sent that contains the WFS_PIN_FK_000 code and three WFS_PIN_FK_0 elements are added to the output buffer.

Clarifications for WFS_CMD_PIN_LOCAL_VISA

Input Param

lpsPAN
Change to description: Primary Account Number from track data, as an ASCII string. lpsPAN should contain the eleven rightmost digits of the PAN (excluding the check digit), followed by the PVKI indicator in the 12th byte.

lpsPVV
Change to description: PIN Validation Value from track data, as an ASCII string with characters in the range ‘0’ to ‘9’. This string should contain 4 digits.
Clarifications for WFS_CMD_PIN_LOCAL_BANKSYS

Description
Change to description:
The PIN Block previously built by the WFS_CMD_PIN_GET_PINBLOCK command is sent to the BANKSYS security control module using the WFS_CMD_PIN_BANKSYS_IO command. The BANKSYS security control module will return an ATMVAC code, which is then used in this command to locally validate the PIN. The key referenced by lpsKey within the most recent successful WFS_CMD_PIN_GET_PINBLOCK command is reused by the WFS_CMD_PIN_LOCAL_BANKSYS command for the local validation.
Clarifications for WFS_CMD_PIN_IMPORT_KEY_EX

Input Param

dwUse
Change to description: Specifies the type of access for which the key can be used. If this parameter equals zero, the key is deleted. Otherwise the parameter can be a combination of the following flags:
wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value
Meaning

WFS_PIN_KCVSELF
The key check value is created by an encryption of the key with itself. For a double length key the KCV is generated using 3DES encryption using the first half of the key as the source data for the encryption.

WFS_PIN_KCVZERO
Change to description: The key check value is created by encrypting a zero value with the key.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_KEYNOTFOUND
Change to description: The specified key encryption key was not found or attempting to delete a non-existent key.

Clarifications for WFS_CMD_PIN_ IMPORT_RSA_PUBLIC_KEY

Input Param

dwUse
When a signature is required to authenticate the deletion of the public key, all parameters in the command are used. lpxValue must contain the concatenation of the public key to be deleted and the Security Item which uniquely identifies the PIN device (see the WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM command) and the PKCS #1 formatted RSA public key to be deleted, ie UIATM|| PKTO DELETE. lpxSignature contains the signature generated from lpxValue using the private key component of the public key being deleted.

Clarifications for WFS_CMD_PIN_ IMPORT_RSA_SIGNED_DES_KEY

Output Param

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value
Meaning

WFS_PIN_KCVSELF
The key check value is calculated by an encryption of the key with itself. For a double length key the KCV is generated using 3DES encryption using the first half of the key as the source data for the encryption.
Clarifications for WFS_CMD_PIN_ IMPORT_RSA_ENCIPHERED_PKCS7_KEY

Comments The following is a generic structure of how the lpxImportRSAIn field is structured regarding the outer signed data content type and the inner content as an Envelope-data content type:

ContentInfo ::= SEQUENCE

{

contentType ContentType = signedData

content

SignedData ::= SEQUENCE

{

version Version,

DigestAlgorithms DigestAlgorithmIdentifiers,

contentInfo ContentInfo ::= SEQUENCE,

{

contentType ContentType = EnvelopedData

content

:::

}

}

}
Clarifications for WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY
Input Param
LPWFSPINEMVIMPORTPUBLICKEY lpEMVImportPublicKey;

lpxImportData
...
If wImportScheme is WFS_PIN_EMV_IMPORT_ISSUER then lpxImportData contains the EMV public key certificate. Within the following descriptions tags are documented to indicate the source of the data, but they are not sent down to the Service Provider. The data consists of the concatenation of: the key exponent length (1 byte), the key exponent value (variable length – EMV Tag value: ‘9F32’), the EMV certificate length (1 byte), the EMV certificate value (variable length – EMV Tag value: ‘90’), the remainder length (1 byte). The remainder value (variable length – EMV Tag value: ‘92’), the PAN length (1 byte) and the PAN value (variable length – EMV Tag value: ‘5A’). The Service Provider will compare the leftmost three to eight hex digits (where each byte consists of two hex digits) of the PAN to the Issuer Identification Number retrieved from the certificate. For more explanations, the reader can refer to EMVco, Book2 – Security & Key Management Version 4.0, Table 4 (See [Ref. 4] under the reference section for this document). lpsSigKey defines the previously loaded key used to verify the signature.

Clarifications for WFS_EXEE_PIN_KEY

Event Param

ulDigit
Change to description: Specifies the digit entered by the user. When working in encryption mode (WFS_CMD_PIN_GET_PIN), the value of this field is 0x00 for the numeric FK keys (WFS_PIN_FK_0 - _9). Otherwise, for each key pressed, the corresponding FK or FDK mask value is stored in this field.

Clarifications for RSA Secure Key Exchange using Digital Signatures

Step 3

The Host sends its public key to the ATM PIN:
The Host sends its Public Key and associated Signature. The ATM PIN verifies the signature using PKSI and stores the key.

The XFS command used to export the PIN import the HOST public key securely as described above is WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Clarifications for C-Header File

Description changed to read /* additional values for WFSPINKEYDETAILEX.dwUse */
#define WFS_PIN_USEPINLOCAL (0x10000)

#define WFS_PIN_USERSAPUBLIC (0x20000)

#define WFS_PIN_USERSAPRIVATE (0x40000)

#define WFS_PIN_USECHIPINFO (0x100000)

#define WFS_PIN_USECHIPPIN (0x200000)

#define WFS_PIN_USECHIPPS (0x400000)

#define WFS_PIN_USECHIPMAC (0x800000)

#define WFS_PIN_USECHIPLT (0x1000000)

#define WFS_PIN_USECHIPMACLZ (0x2000000)

#define WFS_PIN_USECHIPMACAZ (0x4000000)

Check Reader/Scanner

Class Name

CHK
Clarifications for WFS_CMD_CHK_RESET

Input Param
LPWORD
 lpwResetIn;

If this value lpwResetIn is a NULL pointer the service provider will determine where to move any media found.
Depository Unit

Class Name

DEP

Clarifications for WFS_CMD_DEP_ENTRY

Description
This command starts the entry of an envelope and attempts to deposits it into the deposit container.
A deposit is considered to be successful if an envelope is inserted and the shutter closes such that the customer no longer has access to it. This includes cases where the deposited envelope reaches the deposit container, becomes jammed before reaching the container, or cannot be returned to the customer.

If a successful deposit takes place, then this command will always complete with WFS_SUCCESS, and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event.

If a successful deposit causes the deposit bin to reach a high or full threshold, a WFS_USRE_DEP_DEPTHRESHOLD event will be sent.

A deposit is considered to be unsuccessful if an envelope is inserted, an error occurs, and the customer has the ability to access it. This includes cases where an envelope is returned to the user, or cases where it becomes jammed but the customer is still able to access it.

If an unsuccessful deposit takes place, then the command will always complete with an appropriate error code, and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event.

If the envelope is entered and then returned to the exit slot for removal by the customer, if the deposit device is capable of this operation (either hardware capability or hardware problems such as a jam may prohibit the envelope from being returned) a WFS_SRVE_DEP_ENVTAKEN will be sent when it is removed.

For example, if the envelope entered has an incorrect size and the deposit was unsuccessfulnot completed, the envelope is returned to the exit slot for removal by the customer, if the deposit device is capable of this operation (either hardware capability or hardware problems such as a jam may prohibit the envelope from being returned). A WFS_SRVE_DEP_ENVTAKEN is sent when the envelope is removed. If the envelope is returned to the customer for removal, the command will complete with WFS_ERR_DEP_ENVSIZE. A WFS_SRVE_DEP_ENVTAKEN is sent when the envelope is removed. But if returning the envelope is not possible and the customer cannot access the envelope, the command will complete with WFS_SUCCESS and a WFS_EXEE_DEP_DEPOSITERROR event is sent reporting a WFS_ERR_DEP_ENVSIZE.
If a deposit takes place then this command will report a successful operation and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event. If the successful deposit causes the deposit bin to reach a high or full threshold, a WFS_USRE_DEP_DEPTHRESHOLD event will be sent.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

…
WFS_ERR_DEP_NOENV
The conveyor has started running because the sensor detected something, but there was no envelope to transport or the envelope has been taken by the user.

Clarifications for WFS_CMD_DEP_RETRACT

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

…
WFS_SRVE_DEP_ENVTAKEN
The envelope has been taken by the user.

Text Terminal Unit

Class Name

TTU
Clarifications for WFS_INF_TTU_STATUS

Output Param
LPWFSTTUSTATUS
lpStatus;
typedef struct _wfs_ttu_status

{

WORD

fwDevice;

WORD

wKeyboard;

WORD

wKeylLock;

WORD

wLEDs [WFS_TTU_LEDS_MAX];

WORD

wDisplaySizeX;

WORD

wDisplaySizeY;

LPSTR

lpszExtra;

} WFSTTUSTATUS, * LPWFSTTUSTATUS;

wKeylLock
Specifies the state of the keyboard lock of the text terminal unit as one of the following flags:

…

Clarifications for WFS_INF_TTU_CAPABILITIES

Output Param
lppResolutions
Pointer to a NULL terminated array of pointers WFSTTURESOLUTION structures. Specifies the resolutions supported by the physical display device. (For a definition of WFSTTURESOLUTION see command WFS_CMD_TTU_SET_RESOLUTION). The resolution indicated in the first position is the default resolution and the device will be placed in this resolution when the SP is initialized or reset through the WFS_CMD_TTU_RESET command.

bDisplayLight

Specifies whether the text terminal unit has a display light that can be switched ON and OFF with the WFS_CMD_TTU_DISPLIGHT command. The value can be either FALSE (not available) or TRUE (available).

Clarifications for WFS_CMD_TTU_WRITE_FORM

Input Param
LPWFSTTUWRITEDISPLAYFORM lpWriteform;

Clarifications for WFS_CMD_TTU_READ_FORM

Input Param
lpszFieldNames
Pointer to a list of null-terminated field names from which to read input data, with the final name terminating with two null characters. The fields are edited by the user in the order that the fields are specified within this parameter. If this value lpszFieldNames is a NULL pointer, then data is read from all input fields on the form in the order they appear in the form file (independent of the field screen position).

Clarifications for WFS_CMD_TTU_SET_LED

Input Param
fwCommands
Specifies the state of the LED, as one of the following flags:

Value
Meaning

WFS_TTU_LEDOFF
The LED is turned off.

WFS_TTU_LEDSLOWFLASH
The LED is set to flash slowly.

WFS_TTU_LEDMEDIUMFLASH
The LED is blinking medium frequency.

WFS_TTU_LEDQUICKFLASH
The LED is set to flash quickly.

WFS_TTU_LEDCONTINUOUS
The LED is turned on continuously (steady).

If an LED flash state is not supported no error will be generated, instead the TTU SP will use the LED flash state closest to the one requested.

Clarifications for WFS_CMD_TTU_SET_RESOLUTION

Description
This command is used to set the resolution of the display, the screen is cleared and the cursor is positioned at the upper left position.

Clarifications for WFS_CMD_TTU_RESET

Description
Sends a service reset to the service provider. This command clears the screen, and clears the keyboard buffer, sets the default resolution and sets the cursor position to the upper left.
Clarifications for Definition Syntax

Other notes:

· All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the UNICODE representation is used then all Names and Strings are restricted to an internal representation of ISO 646 (ANSI) characters. Only the INITIALVALUE and FORMAT keyword values can have double byte values outside of the ISO 646 (ANSI) character set.

· In the form definition file, where characters are expressed using standard C hexadecimal escape sequences, the high order byte is defined first. For example, “\x0041” would represent the character 'A'. This is independent of the encoding format of the form definition file.

Clarifications for Form Definition

Add default values for VERSION:

	XFSFORM
	
	formname*
	

	BEGIN
	
	
	

	
	VERSION
	major,
	Major version number (default 0)

	
	
	minor,
	Minor version number (default 0)

	
	
	date*,
	Creation/modification date

	
	
	author*
	Author of form

Clarifications for Field Definition

	XFSFIELD
	
	fieldname*
	

	BEGIN
	
	
	

	
	KEYS
	keys
	Accepted input key types:

NUMERIC

HEXADECIMAL

ALPHANUMERIC

This is an optional field where the default value is vendor dependent.

Sensors and Indicators Units

Class Name

SIU
Clarifications for WFS_INF_SIU_STATUS

OutPut Param
fwAuxiliaries [WFS_SIU_VOLUME]
Change to description: Specifies the value of the volume control. The value of volume control is defined in an interval from 1 to 1000 where 1 is the lowest volume level and 1000 is the highest volume level. The interval is defined in logarithmic steps, e.g. a volume control on a radio. Note: The volume control field is handled as unsigned short. Interpretation of this value is vendor-specific and therefore it is not possible to guarantee a consistent actual volume level across different vendor hardware.
Value
Meaning
WFS_SIU_NOT_AVAILABLE
The status is not available.

1, ..., 1000
The volume level. This field is handled as an unsigned

fwSensors [WFS_SIU_AMBLIGHT]
Change to description: Specifies the state of the Ambient Light Sensor. This sensor indicates the level of ambient light around the terminal. Interpretation of this value is vendor-specific and therefore it is not guaranteed to report a consistent actual ambient light level across different vendor hardware. Specified as one of the following flags:

Value
Meaning
WFS_SIU_NOT_AVAILABLE
The status is not available.

WFS_SIU_VERY_LIGHT
The level of light is: very light
WFS_SIU_LIGHT
The level of light is: light
WFS_SIU_MEDIUM_LIGHT
The level of light is: medium light
WFS_SIU_DARK
The level of light is: dark
WFS_SIU_VERY_DARK
The level of light is: very dark
fwIndicators [WFS_SIU_AUDIO]
Change to description: Specifies the state of the Audio Indicator as one of the following flags of type A and B, or as WFS_SIU_ CONTINUOUS in combination with one of the flags of type B. Interpretation of this value is vendor-specific and therefore it is not possible to guarantee a consistent actual sound pattern across different vendor hardware.:

	Value
	Meaning
	Value

	WFS_SIU_NOT_AVAILABLE
	The status is not available.
	A

	WFS_SIU_OFF
	The Audio Indicator is turned off.
	A

	WFS_SIU_KEYPRESS
	The Audio Indicator sounds a key click signal.
	B

	WFS_SIU_EXCLAMATION
	The Audio Indicator sounds a exclamation signal.
	B

	WFS_SIU_WARNING
	The Audio Indicator sounds a warning signal.
	B

	WFS_SIU_ERROR
	The Audio Indicator sounds a error signal.
	B

	WFS_SIU_CRITICAL
	The Audio Indicator sounds a critical signal.
	B

	WFS_SIU_CONTINUOUS
	The Audio Indicator sound is turned on continuously.
	C

fwGuidLights [...]
Change to description: Specifies the state of the Guidance Light Indicators. A number of guidance light types are defined below. Vendor specific guidance lights are defined starting from the end of the array. The maximum guidance light index is WFS_SIU_GUIDLIGHTS_MAX. All member elements in this array are specified as one of the following flags. Interpretation of this value is vendor-specific and therefore it is not possible to guarantee a consistent actual flash rate across different vendor hardware.:

	Value
	Meaning

	WFS_SIU_NOT_AVAILABLE
	The status is not available.

	WFS_SIU_OFF
	The light is turned off.

	WFS_SIU_SLOW_FLASH
	The light is blinking slowly.

	WFS_SIU_MEDIUM_FLASH
	The light is blinking medium frequency.

	WFS_SIU_QUICK_FLASH
	The light is blinking quickly.

	WFS_SIU_CONTINUOUS
	The light is turned on continuous (steady).

Clarifications for WFS_INF_SIU_CAPABILITIES

OutPut Param
fwGuidLights [...]
Change to description: Specifies which Guidance Lights are available, and if so, which states they can take. A number of guidance light types are defined below. Vendor specific guidance lights are defined starting from the end of the array. The maximum guidance light index is WFS_SIU_GUIDLIGHTS_MAX. The elements of this array are specified as one of the following flags:

Value
Meaning
WFS_SIU_NOT_AVAILABLE
Change to description: There is no Guidance Light available at this position or the device controls the light directly with no application control possible.

WFS_SIU_AVAILABLE
A Guidance Light is available at this position.

Clarifications for WFS_CMD_SIU_SET_AUXILIARY

Input Param
fwCommand
It specifies the values for the volume control or the command to the UPS device auxiliary specified by wAuxiliary. Specified as the following values:

Comments
None
When wAuxiliary is any value other than WFS_SIU_REMOTE_STATUS_MONITOR the fwCommand parametrer should contain one of the values that correspond to the auxiliary defined in wAuxiliary.

When wAuxiliary is WFS_SIU_REMOTE_STATUS_MONITOR then the fwCommand parametrer.may be specified as a combination of one or more of the following flags of type B, C and D, with at most one flag from each type.

Value
Meaning
Type

	WFS_SIU_NO_CHANGE
	Do not change the current status of the Remote Status Monitor device
	A

	WFS_SIU_GREEN_LED_ON
	Turn on the green LED on the Remote Status Monitor device
	B

	WFS_SIU_GREEN_LED_OFF
	Turn off the green LED on the Remote Status Monitor device.
	B

	WFS_SIU_AMBER_LED_ON
	Turn on the amber LED on the Remote Status Monitor device.
	C

	WFS_SIU_AMBER_LED_OFF
	Turn off the amber LED on the Remote Status Monitor device.
	C

	WFS_SIU_RED_LED_ON
	Turn on the red LED on the Remote Status Monitor device.
	D

	WFS_SIU_RED_LED_OFF
	Turn off the red LED on the Remote Status Monitor device.
	D

Vendor Dependent Mode

Class Name

VDM
Clarifications for flow: VDM Entry triggered by XFS Application

At time t0, status is “Inactive” and a request to Enter VDM arises from within the Application system.

At time t1, an Application Process/Thread/Function issues the CMD_ENTER_MODE_REQ Execute cmd.

Status then becomes “Enter Pending”.

At time t2, the VDM Service Provider issues the SRVE_ENTER_MODE_REQ Event to all registered applications.

At time t3, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from a XFS Compliant Application.

At time t4, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from a XFS Compliant Application

At time t5, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from another XFS Compliant Application

At time t6, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from the last XFS Compliant Application

At time t7, the VDM Service Provider issues the SYSE_MODEENTERED Event to all registered applications

Status then becomes “Active”.

The system is now in Vendor Dependent Mode and a Vendor Dependent Application can exclusively use the system devices in a Vendor Dependent manner.

Clarifications for flow: VDM Entry triggered by Vendor Dependent Switch

At time t0, status is “Inactive” and a request to Enter VDM arises from within the Vendor System.

Status then becomes “Enter Pending”.

At time t1, the VDM Service Provider issues the SRVE_ENTER_MODE_REQ Event to all registered applications.

At time t2, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from a XFS Compliant Application

At time t3, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from another XFS Compliant Application

At time t4, the VDM Service Provider receives a CMD_ENTER_MODE_ACK Execute Command from the last XFS Compliant Application

At time t5, the VDM Service Provider issues the SYSE_MODEENTERED Event to all registered applications

Status then becomes “Active”.

The system is now in Vendor Dependent Mode and the Vendor Dependent Application can exclusively use the system devices in a Vendor Dependent manner.

Clarifications for flow: VDM Exit triggered by XFS Application

At time t0, status is “Active” and a request to Exit VDM arises from within the Application system.

At time t1, an Application Process/Thread/Function issues the CMD_EXIT_MODE_REQ Execute cmd.

Status then becomes “Exit Pending”.

At time t2, the VDM Service Provider issues the SRVE_EXIT_MODE_REQ Event to all registered applications.

At time t3, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from a XFS Compliant Application

At time t4, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from a XFS Compliant Application

At time t5, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from another XFS Compliant Application

At time t6, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from the last XFS Compliant Application

At time t7, the VDM Service Provider issues the SYSE_MODEEXITED Event to all registered applications

Status then becomes “Inactive”.

The system is now no longer in Vendor Dependent Mode and the XFS Compliant Applications can re-open any required services with other XFS Service Providers.

Clarifications for flow: VDM Exit triggered by Vendor Dependent Switch

At time t0, status is “Active” and a request to Exit VDM arises from within the Vendor System.

Status then becomes “Exit Pending”.

At time t1, the VDM Service Provider issues the SRVE_EXIT_MODE_REQ Event to all registered applications.

At time t2, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from a XFS Compliant Application

At time t3, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from another XFS Compliant Application

At time t4, the VDM Service Provider receives a CMD_EXIT_MODE_ACK Execute Command from the last XFS Compliant Application

At time t5, the VDM Service Provider issues the SYSE_MODEEXITED Event to all registered applications.

Status then becomes “Inactive”.

The system is now no longer in Vendor Dependent Mode and the XFS Compliant Applications can re-open any required services with other XFS Service Providers.

Clarifications for WFS_CMD_VDM_ENTER_MODE_ACK

Description
This command is issued by a registered application as an acknowledgement to the WFS_SRVE_VDM_ENTER_MODE_REQ Event message and it indicates that the application is ready for the system to enter Vendor Dependent Mode. All registered applications (including the application that issued the request to enter VDM mode) must respond before VDM mode will be entered. Completion of this command is immediate.

Clarifications for WFS_CMD_VDM_EXIT_MODE_ACK

Description
This command is issued by a registered application as an acknowledgement to the WFS_SRVE_VDM_EXIT_MODE_REQ Event message and it indicates that the application is ready for the system to exit Vendor Dependent Mode. All registered applications (including the application that issued the request to exit VDM mode) must respond before VDM mode will be exited. Completion of this command is immediate.

Cameras

Class Name

CAM

Clarifications for WFS_INF_CAM_STATUS

Output Param
..

fwMedia […]
Specifies the state of the recording media of the cameras. A number of indexes are defined below. The maximum fwMedia index is WFS_CAM_CAMERAS_MAX. For a device which stores pictures on a hard disk drive or other general-purpose storage, the value of the fwMedia field should be WFS_CAM_MEDIANOTSUPP.
Alarms

Class Name

ALM
No clarifications

Card Embossing

Class Name

CEU
Clarifications for WFS_CMD_CEU_RESET
Input Param
LPWORD
lpwCeuMediaControl;

If lpwCeuMediaControl is a NULL pointer the service provider will determine where to move any media found.

Cash In Module

Class Name

CIM

Clarifications for Section Cash-In Module

…

If the device is a Cash Recycler then, if cash unit exchanges are required on both interfaces, the exchanges cannot be performed concurrently. An exchange on one interface must be complete (the WFS_CMD_CIM_END_EXCHANGE must have completed) before an exchange can start on the other interface. The WFS_ERR_CIM_EXCHANGEACTIVE error code will be returned if the correct sequence is not adhered to. If the device has recycle units of multiple currencies and/or denominations (including multiple note identifiers associated with the same denomination), then the CIM interface should be used for exchange operations involving these cash units.

The following commands on the CDM interface may affect the CIM counts:

WFS_CMD_CDM_DISPENSE

WFS_CMD_CDM_PRESENT

WFS_CMD_CDM_RETRACT

WFS_CMD_CDM_COUNT

WFS_CMD_CDM_REJECT

WFS_CMD_CDM_SET_CASH_UNIT_INFO

WFS_CMD_CDM_END_EXCHANGE

WFS_CMD_CDM_CALIBRATE_CASH_UNIT

WFS_CMD_CDM_RESET

WFS_CMD_CDM_TEST_CASH_UNITS
Clarifications for WFS_INF_CIM_STATUS

Output Param
fwAcceptor
Supplies the state of the acceptor cash units as one of the following values:

Value
Meaning

WFS_CIM_ACCOK
All cash units present are in a good state.

WFS_CIM_ACCCUSTATE
One of the cash units present is in an abnormal state. The acceptor is may be operational, but one or more of the cash units is in a high, full, or inoperative or manipulated condition. Items can still be accepted into at least one of the cash units.

WFS_CIM_ACCCUSTOP
Due to a cash unit failure accepting is impossible. The acceptor is may be operational, but no items can be accepted because all of the cash units are in a full, or inoperative or manipulated condition.
This state also occurs when a retract cash unit is full or no retract cash unit is present, or an application lock is set on every cash unit.

WFS_CIM_ACCCUUNKNOWN
Due to a hardware error or other condition, the state of the cash units cannot be determined.

lppPositions
…
fwTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:
Clarifications for WFS_INF_CIM_CAPABILITIES

Output Param
wMaxCashInItems
Supplies the maximum number of items that can be accepted in a single cash in operation WFS_CMD_CIM_CASH_IN command. Normally reflects hardware limitations of the device.

bShutter
If this flag is TRUE then the device has a shutter and explicit shutter control through the commands WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER is supported. The definition of a shutter will depend on the h/w implementation. On some devices where items are automatically detected and accepted then a shutter is simply a latch that is opened and closed, usually under implicit control by the service provider. On other devices, the term shutter refers to a door, which is opened and closed to allow the customer to place the items onto a tray. If a service provider cannot detect when items are inserted and there is a shutter on the device, then it must provide explicit application control of the shutter.
bRefill
The bRefill field in the capabilities block is not used.
bItemsInsertedSensor
Specifies whether the CIM has the ability to detect when items have actually been inserted by the user. If set to TRUE the service provider generates an accompanying WFS_SRVE_CIM_ITEMSINSERTED event. If set to FALSE this event is not generated. This field relates to all input positions. This flag should not be reported as TRUE unless item insertion can be detected.
fwRetractAreas
Specifies the areas to which items may be retracted. If the device does not have a retract capability this field will be WFS_CIM_RA_NOTSUPP. Otherwise tThis field will be set to a combination of the following flags:

Value
Meaning

WFS_CIM_RA_RETRACT
Items may be retracted to the retract cash unit.

WFS_CIM_RA_TRANSPORT
Items may be retracted to the transport.

WFS_CIM_RA_STACKER
Items may be retracted to the intermediate stacker.

WFS_CIM_RA_BILLCASSETTES
Change to description: Items may be retracted to recycle cassettes.

WFS_CIM_RA_NOTSUPP
The CIM does not have the ability to retract.

fwRetractTransportActions

Specifies the actions which may be performed on items which have been retracted to the transport. If the device does not have a retract capability this field will be WFS_CIM_NOTSUPP. Otherwise tThis field will be one set to a combination of the following values flags:

Value
Meaning

WFS_CIM_RETRACT
The items may be retracted to a retract cash unit.

WFS_CIM_NOTSUPP
The CIM does not have the ability to retract from the transport.

fwRetractStackerActions

Specifies the actions which may be performed on items which have been retracted to the stacker. If the device does not have a retract capability this field will be WFS_CIM_NOTSUPP. Otherwise is will be set to one a combination of the following values flags:

Value
Meaning

WFS_CIM_PRESENT
The items may be moved to the exit position.

WFS_CIM_RETRACT
The items may be retracted to a retract cash unit.

WFS_CIM_NOTSUPP
The CIM does not have the ability to retract from the stacker.

Clarifications for WFS_INF_CIM_CASH_UNIT_INFO

Description

Threshold Events

The threshold event, WFS_USRE_CIM_CASHUNITTHRESHOLD (WFS_CIM_STATCUHIGH), can be triggered either by hardware sensors in the device or by the ulCount reaching the ulMaximum value.

…

In the situation where the cash unit is associated with multiple physical cash units. WFS_SRVE_CIM_CASHUNITINFOCHANGED can be generated when each of the physical cash units reaches the threshold. When the final physical cash unit reaches the threshold, the WFS_USRE_CIM_CASHUNITTHRESHOLD (WFS_CIM_STATCUHIGH) event will be are generated.

Exchanges

If a physical cash unit is inserted (including removal followed by a reinsertion) removed when the device is not in the exchange state the status usPStatus of the physical cash unit will be set to WFS_CIM_STATMANIP and the values of the physical cash unit prior to its’ removal will be returned in any subsequent WFS_INF_CIM_CASH_UNIT_INFO command. The physical cash unit will not be used in any operation. The application must perform an exchange operation specifying the new values for the physical cash unit in order to recover the situation.
On recycling and retract units the counts and status reflect the physical status of the cassette and are therefore consistently reported on both the CDM and CIM interfaces. When a value is changed through an exchange on one interface it is also changed on the other.

Output Param
fwType
Specifies the type of cash unit takes one of the following values:

Value
Meaning

WFS_CIM_TYPEREPCONTAINER
Change to description: Replenishment container. A cash unit can be refilled from emptied to a replenishment container.

fwItemType
Specifies the type of items the Cash Unit takes. This value is specified as a combination of the following flags. The table in the Comments section of this command define how to interpret the combination of these flags.

Value
Meaning

WFS_CIM_CITYPALL
The cash in unit takes all fit banknote types.

WFS_CIM_CITYPUNFIT
The cash in unit takes all unfit banknotes.

WFS_CIM_CITYPINDIVIDUAL
The cash in unit or recycler takes all types of fit bank notes specified in an individual list

WFS_CIM_CITYPLEVEL2
All Paragraph 6 level 2 note types are stored in this cash in unit

WFS_CIM_CITYPLEVEL3
All Paragraph 6 level 3 note types are stored in this cash in unit.

Support for classifying validated notes as 'unfit' is hardware dependent. On h/w that cannot classify notes as 'unfit', all validated banknotes will be treated as 'fit' and accepted by cash units of type WFS_CIM_CITYPALL and/or WFS_CIM_CITYPINDIVIDUAL. On such h/w the value WFS_CIM_CITYPUNFIT will not be used.

On h/w that can classify notes as 'unfit', validated 'fit' banknotes will be accepted by cash units of type WFS_CIM_CITYPALL and/or WFS_CIM_CITYPINDIVIDUAL. If the cash unit is configured as a combination of WFS_CIM_CITYPALL or WFS_CIM_CITYPINDIVIDUAL with WFS_CIMCITYPUNFIT then the cash unit accepts valid 'fit' and 'unfit' banknote types.

cCurrencyID
Change to description: A three character array storing the ISO format Currency ID [see Ref. 2]. This value will be an array of three ASCII 0x20h characters for cash units which contain items of more than one currency type or items to which currency is not applicable. If the usStatus field for this cash unit is WFS_CIM_STATCUNOVAL it is the responsibility of the application to assign a value to this field.

ulValues
Change to description: Supplies the value of a single item in the cash unit. This value is expressed in minimum dispense units [see Section x]. If the cCurrencyID field for this cash unit is empty or the cash unit is configured to accept more than one denomination of note then this field will contain 0. The value of the notes stored in the cash unit can be calculated from the contents of lpNoteNumberList and the data returned from the WFS_INF_CIM_BANKNOTE_TYPES command. If the usStatus field for this cash unit is WFS_CIM_STATCUNOVAL it is the responsibility of the application to assign a value to this field.

ulCashInCount

Count of items that have entered the cash unit. This counter is incremented whenever a bill enters the physical cash unit for any reason. This value is persistent. For a retract cash unit this value represents the total number of notes of all types in the cash unit, or if the device cannot count notes during a retract operation this value will be zero.
ulCount
Change to description: Total number of notes of all types in the cash unit. If the cash unit is a recycle cash unit or a retract unit then this value may not be the same as the value of ulCashInCount. For a recycle cash unit, the value may be decremented as a result of a dispense operation on the CDM interface. This count is only decremented when these items are either known to be in customer access or successfully rejected. For a retract cash unit (i.e. fwType is WFS_CIM_TYPERETRACTCASSETTE) this value specifies the number of retract operations (CIM commands, CDM commands and error recovery) which result in items entering the cash unit. This value will be increased by one for every cash in transaction storing level 2 notes. This value is persistent.
ulMaximum
When the ulCount reaches this value the threshold event WFS_USRE_CIM_CASHUNITTHRESHOLD(WFS_CIM_STATCUHIGH) will be generated. If this value is non-0 then hardware sensors in the device do not trigger threshold events. If this value is zero then hardware sensors may trigger threshold events.
usStatus
Describes the status of the cash unit as one of the following values:

Value
Meaning

WFS_CIM_STATCUFULL
The cash in cash unit or recycle unit is full.

WFS_CIM_STATCUHIGH
The cash in cash unit is almost full (threshold).

WFS_CIM_STATCUEMPTY
The recycle cash unit is empty.

WFS_CIM_STATCUINOP
The cash in cash unit or recycle unit is inoperative.

WFS_CIM_STATCUMISSING
The cash in cash unit is missing.

WFS_CIM_STATCUNOREF
There is no reference value available for the notes in this cash unit. The cash unit has not been configured. This value has no meaning on the CIM and is not used.
WFS_CIM_STATCUMANIP
The cash unit has been inserted (including removal followed by a reinsertion) changed when the device was not in the exchange state. Items cannot be accepted into this cash unit.

usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value
Meaning

WFS_CIM_STATCUHIGH
The cash unit is almost full (nearing the reached or exceeded the threshold defined by ulMaximum).

WFS_CIM_STATCULOW
Change to description: The cash unit is almost empty (nearing the threshold defined by ulMinimum).
WFS_CIM_STATCUEMPTY
The cash unit is empty.

WFS_CIM_STATCUMISSING
The cash unit is missing (the cash unit has been removed and is physically not present in the machine).

WFS_CIM_STATCUNOREF
There is no reference value available for the notes in this cash unit. The cash unit has not been configured. This value has no meaning on the CIM and is not used.
WFS_CIM_STATMANIP
The cash unit has been inserted (including removal followed by a reinsertion) changed when the device was not in the exchange state.

lpNoteNumberList
Change to description: Pointer to a WFSCIMNOTENUMBERLIST structure. If the cash unit is a retract cash unit this pointer will be NULL except for the following cases:

1. when if the retract cash unit accepts level 2 notes. In this case then the number and type of level 2 notes is returned in the lpNoteNumberList and ulCount contains the number of retract operations.

2. if items are recognized during retract operations then the number and type of notes retracted is returned in lpNoteNumberList and ulCount contains the number of retract operations. ulCashInCount contains the actual number of retracted items.
lpszExtra
A string of vendor-specific information about the logical cash unit consisting of “key=value” sub-strings. Each sub-string is null-terminated, with the final sub-string terminating with two null characters.

The following key/value pair defines the note IDs of the bank notes that cash units with an fwItemType of WFS_CIM_CITYPINDIVIDUAL can take. This field is formatted as follows:

“lpusNoteIDs=<Comma Separated List of Decimal Note Identifiers>”

For example, “lpusNoteIDs=1,2,44,65000” means that the cash units accepts 4 banknote types with note type identifiers 1, 2, 44, & 65000. This field only applies to cash units with the WFS_CIM_CITYPINDIVIDUAL fwItemType flag set. If there are no note IDs defined for the cash unit then lpusNoteIDs will contain an empty list, i.e. “lpusNoteIDs=”. If the cash unit does not have the WFS_CIM_CITYPINDIVIDUAL flag set then lpusNoteIDs will not be present. The list only contains the note IDs directly associated with the WFS_CIM_CITYPINDIVIDUAL list, if the cash unit fwItemType is a combination of WFS_CIM_CITYPINDIVIDUAL and a type that represents all note types (e.g. WFS_CIM_CITYPLEVEL3), the list does not contain all note IDs.

Comments
None The following table defines the interpretation of the fwItemType flag for single values and a sub-set of possible combinations (many of which may not actually be possible on physical hardware implementations). The check mark means that the corresponding flag is set, empty means that the corresponding flag is not set.

For a definition of the terms 'fit' and 'unfit' see the description of fwItemType itself. The combinations not included in this table can be interpolated from this table.

	ALL
	UNFIT
	INDIVIDUAL
	LEVEL 3
	LEVEL 2
	Description

	√
	
	
	
	
	Fit notes for all note ids

	
	√
	
	
	
	Unfit notes for all note ids

	
	
	√
	
	
	Fit notes from the Individual note list

	
	
	
	√
	
	Level 3 notes for all note ids

	
	
	
	
	√
	Level 2 notes for all note ids

	√
	√
	
	
	
	Fit notes for all note ids & unfit notes for all note ids

	√
	
	
	√
	
	Fit notes for all note ids & level 3 notes for all note ids

	√
	
	
	
	√
	Fit notes for all note ids & level 2 notes for all note ids

	√
	
	
	√
	√
	Fit notes for all note ids & level 3 notes for all note ids & level 2 notes for all note ids

	√
	√
	
	√
	√
	Fit notes for all note ids & unfit notes for all note ids & level 3 notes for all note ids & level 2 notes for all note ids

	
	√
	√
	
	
	Fit notes from the Individual note list & unfit notes for all note ids

	
	
	√
	√
	
	Fit notes from the Individual note list & level 3 notes for all note ids.

	
	
	√
	
	√
	Fit notes from the Individual note list & level 2 notes for all note ids.

	
	
	√
	√
	√
	Fit notes from the Individual note list & level 3 notes for all note ids & level 2 notes for all note ids.

	
	√
	√
	√
	√
	Fit notes from the Individual note list & unfit notes for all note ids & level 3 notes for all note ids & level 2 notes for all note ids.

Note: WFS_CIM_CITYPALL always overrides WFS_CIM_CITYPINDIVIDUAL when these values are combined.

Clarifications for WFS_INF_CIM_GET_P6_INFO

Description
This command is used to get information about the number of level 2 / level 3 notes on the intermediate stacker and the number of created level2 / level 3 signatures.

This information is available from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_REPLENISH.
Additionally for a Recycler, the following CDM commands will also invalidate the information:
WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_TEST_CASH_UNITS.

This information is persistent.
This command can be used both within and out with a cash in transaction.

Clarifications for WFS_INF_CIM_GET_P6_SIGNATURE

Description
This command is used to get one specific signature.

Signatures are available from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CDM_CIM_CASH_IN, WFS_CDM_CIM_CASH_IN_ROLLBACK, WFS_CDM_CIM_CASH_IN_END, WFS_CDM_CIM_RETRACT, WFS_CDM_CIM_RESET, WFS_CDM_CIM_START_EXCHANGE, WFS_CDM_CIM_END_EXCHANGE, WFS_CDM_CIM_REPLENISH.
Additionally for a Recycler, the following CDM commands will also invalidate the information:
WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_TEST_CASH_UNITS.

This command is used to retrieve the required information on an individual item basis. Applications should loop retrieving the information for each index and for each level reported with the WFS_INF_CIM_GET_P6_INFO command.

This command can be used both within and out with a cash in transaction.

Clarifications for WFS_INF_CIM_CASH_IN_STATUS

Description
This command is used to get information about the status of the last currently active cash-in transaction or in the case where no cash-in transaction is active the status of the most recently ended Cash-In transaction.
This value is persistent and is valid until the next WFS_CMD_CIM_CASH_IN_START.

Input Param
None.

Output Param
LPWFSCIMCASHINSTATUS
lpCashInStatus;

typedef struct _wfs_cim_cash_in_status
{
WORD
wStatus;
USHORT
usNumOfRefused;
LPWFSCIMNOTENUMBERLIST
lpNoteNumberList;
LPSTR
lpszExtra;
} WFSCIMCASHINSTATUS, * LPWFSCIMCASHINSTATUS;

wStatus
Status of the currently active or most recently ended Cash-In transaction. Possible values are:

Value
Meaning

WFS_CIM_CIOK
The Cash-In transaction is complete and has ended with a WFS_CMD_CIM_CASH_IN_END command call.

WFS_CIM_CIROLLBACK
The Cash-In transaction was rolled back has ended with a WFS_CMD_CIM_CASH_IN_ROLLBACK command call.

WFS_CIM_CIACTIVE
There is a Cash-In transaction active. See the WFS_CMD_CIM_CASH_IN_START command description for a definition of an active cash-in transaction.
WFS_CIM_CIRETRACT
The Cash-In transaction ended with the items being retracted with a WFS_CMD_CIM_RETRACT command call, or a retract command call on a compound device class.

WFS_CIM_CIUNKNOWN
The state of the Cash-In transaction is unknown.
The cash-in transaction ended with a WFS_CMD_CIM_RESET command call, or a reset command call on a compound device class.
usNumOfRefused
Specifies the number of items refused during the currently active or most recently ended Cash-In transaction period.

lpNoteNumberList
List of banknote types that were inserted, identified and accepted during the currently active or most recently ended Cash-In transaction period. If notes items have been rolled back (wStatus is WFS_CIM_CIROLLBACK) they will be included in this list. If wStatus is WFS_CIM_CIRETRACT or WFS_CIM_CIRESET then identified and accepted items moved to Cash-In or Recycle cash units are included in this list, but items moved to the Retract or Reject cash units are not included. For a description of the WFSCIMNOTENUMBERLIST structure see the definition of the command WFS_INF_CIM_CASH_UNIT_INFO.

If a note handling standard is supported then lpNoteNumberList includes any level 2 or level 3 notes.

Clarifications for WFS_CMD_CIM_CASH_IN_START

Description
Before initiating a Cash-In operation, an application must issue the WFS_CMD_CIM_CASH_IN_START command to begin a Cash-In Transaction. During a Cash-In Transaction any number of WFS_CMD_CIM_CASH_IN commands may be issued. The transaction is ended when either a WFS_CMD_CIM_ROLLBACK or WFS_CMD_CIM_CASH_IN_END command is sent.

On some devices WFS_CMD_CIM_RETRACT will terminate a transaction. In these cases WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_CASH_IN_ROLLBACK and WFS_CMD_CIM_CASH_IN will report WFS_ERR_CIM_NOCASHINACTIVE. If an application wishes to determine where the notes went during a transaction it can execute a WFS_INF_CIM_CASH_UNIT_INFO before and after the transaction and then derive the difference.

A hardware failure during the cash-in transaction does not reset the note number list information; instead the note number list information will include items that could be accepted and identified up to the point of the hardware failure.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CIM_INVALIDTELLERID
Invalid Teller ID. This error will never be generated by a Self-Service CIM.

WFS_ERR_CIM_SAFEDOOROPEN
The safe door is open. This device requires the safe door to be closed in order to perform a Cash-In transaction.
Clarifications for WFS_CMD_CIM_CASH_IN

Description
Change to description:

This command moves items into the CIM from an input position.

The items may pass through the banknote reader for identification. Failure to identify items does not mean that the command has failed - even if some or all of the items are rejected by the banknote reader, the command may return WFS_SUCCESS. In this case one or more WFS_EXEE_CIM_INPUTREFUSE events will be sent to report the rejection.

If the device does not have a banknote reader then the output parameter will be NULL.

If the device has a cash-in stacker then this command will cause inserted Level 4 items to be moved there after validation. Level 2 and level 3 items may also be moved to the cash-in stacker, but some devices may immediately move them to a designated cash unit. Items will be held on the stacker will remain there until the current Cash-In Transaction is either cancelled by WFS_CMD_CIM_ROLLBACK or confirmed by WFS_CMD_CIM_CASH_IN_END. These commands will cause any level 2 or level 3 items on the cash-in stacker to be moved to the appropriate cash unit. If there is no cash-in stacker then this command will move items directly to the cash units and WFS_CMD_CIM_ROLLBACK will not be supported. Cash unit information will be updated accordingly whenever notes are moved to a cash unit during this command.
The bShutterControl field of the LPWFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly open and close the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE then this command opens the shutter at the start of the command and closes it at the end.
It is possible that a device may divide bill or coin accepting into a series of sub-operations under hardware control. In this case a WFS_EXEE_CIM_SUBCASHIN event may be sent after each sub-operation, if the hardware capabilities allow it.
If bShutterControl is TRUE, it is also possible that a device may return refused notes in multiple subsequent bunches. In this case, the WFS_CMD_CIM_CASH_IN command will not complete until the final bunch has been presented and the WFS_SRVE_CIM_ITEMSPRESENTED has been generated.
Output Param
Changed as highlighted in bold:

LPWFSCIMNOTENUMBERLIST
lpNoteNumberList;

lpNoteNumberList
Change to description: List of banknote numbers which have been identified and accepted during execution of this command. If the whole input was refused then this parameter will be NULL and one or more WFS_EXEE_CIM_INPUTREFUSE events will be generated. If only part of the input was refused then this parameter will contain the banknote numbers of the accepted items and one or more WFS_EXEE_CIM_INPUTREFUSE events will be generated. For a description of the LPWFSCIMNOTENUMBERLIST structure see the WFS_INF_CIM_CASH_UNIT_INFO command.

Addition to description: The LPWFSCIMNOTENUMBERLIST structure pointed to by lpNoteNumberList that is returned to the application on completion of a Cash In command contains only the counts for the notes accepted since that particular Cash In command was initiated

The lpNoteNumberList contains all notes accepted including any level 2 or level 3 notes found during the Cash In operation.

Error Codes
Addition/modification to list of error codes which can be generated.

Value
Meaning

WFS_ERR_CIM_TOOMANYITEMS
There were too many items inserted previously. The cash-in stacker is full at the beginning of this command.

WFS_ERR_CIM_SHUTTERNOTCLOSED
Shutter failed to close. In case of explicit shutter control the application should close the shutter first.

WFS_ERR_CIM_SAFEDOOROPEN
The safe door is open. This device requires the safe door to be closed in order to perform a Cash-In transaction.
Events
Addition to list of events which can be generated.

Value
Meaning

WFS_EXEE_CIM_NOTEERROR
A notes An item detection error occurred.

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the output position.

Clarifications for WFS_CMD_CIM_CASH_IN_END

Output Param
lpCashInfo
Change to description: List of cash units that have taken banknotes or coins and the type of banknotes or coins they have taken during the current transaction. For a description of the WFSCIMCASHINFO structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO command. The structure returned only contains data related to the current transaction, e.g ulCount defines the number of notes in the cash unit for this transaction.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CIM_SAFEDOOROPEN
The safe door is open. This device requires the safe door to be closed in order to perform a Cash-In transaction.
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

…
…

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

WFS_EXEE_CIM_NOTEERROR
An item detection error occurred.

Comments
None. In the special case where all the items inserted by the customer are classified as level 2 and/or 3 items and the Service Provider is configured to automatically retain these item types then the WFS_CMD_CIM_CASH_IN_END command will complete with WFS_SUCCESS even if the hardware may have already moved the level 2 and/or 3 items to their respective bins on the WFS_CMD_CIM_CASH_IN command and there are no items on escrow at the start of WFS_CMD_CIM_CASH_IN_END. This allows the location of the notes retained to be reported in the output parameter. If no items are available for cash in for any other reason then the WFS_ERR_CIM_NOITEMS error code is returned.

Clarifications for WFS_CMD_CIM_CASH_IN_ROLLBACK

Description
Addition to description:

The bShutterControl field of the LPWFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly control the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE then this command opens the shutter at the start of the command and closes when all items are removed.
Error Codes
Addition to list of error codes which can be generated.

Value
Meaning

WFS_ERR_CIM_NOITEMS
There were no items to rollback.

WFS_ERR_CIM_SHUTTERNOTOPEN
Shutter failed to open. In the case of explicit shutter control the application may have failed to open the shutter before issuing the command.
Events
Addition to list of events which can be generated.

Value
Meaning

WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the output position.
WFS_SRVE_CIM_ITEMSTAKEN
Either tThe items are available to the user or have been removed by the user, depending on the capability of the CIM. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.
WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

Comments
None. In the special case where all the items inserted by the customer are classified as ECB6 level 2 and/or 3 items and the service provider is configured to automatically retain these item types then the WFS_CMD_CIM_CASH_IN_ROLLBACK command will complete with WFS_SUCCESS even though no items are returned to the customer. This allows the location of the notes retained to be reported in the output parameter. The application can tell if items have been returned or not via the WFS_SRVE_CIM_ITEMSPRESENTED event. This event will be generated before the command completes when items are returned. This event will not be generated if no items are returned. If no items are available to rollback for any other reason then the WFS_ERR_CIM_NOITEMS error code is returned.
Clarifications for WFS_CMD_CIM_RETRACT

Description
Change to description: This command retracts items from an output position or internal areas within the CIM. Retracted items will be moved to either a retract bin, the transport or an intermediate stacker area. If items from internal areas within the CIM are preventing items at an output position from being retracted, the items from internal areas will (where possible) first be moved to a retract bin. After the items are retracted from an output position the shutter is closed automatically, even if the bShutterControl capability is set to FALSE.

On some devices this command ends the current Cash-In Transaction. In these cases the Cash-In transaction is ended even if this command does not complete successfully.

Input Param
fwOutputPosition
Specifies the output position from which to retract the bills. Possible values are:

Value
Meaning

WFS_CIM_POSNULL
Change to description: The default configuration information should be used. This value is also used to retract items from internal CIM locations.

usRetractArea
This value specifies the area to which the items are to be retracted. Possible values are:

Value
Meaning

WFS_CIM_RA_BILLCASSETTES
Change to description: Retract the items to the cash units.

Error Codes
Addition/modification to list of error codes which can be generated.

Value
Meaning

WFS_ERR_CIM_SHUTTERNOTCLOSED
Shutter failed to close. In case of explicit shutter control the application should close the shutter first.

Events
Addition to list of events which can be generated.

Value
Meaning

WFS_EXEE_CIM_NOTEERROR
A note An item detection error occurred.

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.

Clarifications for WFS_CMD_CIM_OPEN_SHUTTER

Description
This command opens the shutter.
In cases where multiple bunches are to be returned under explicit shutter control and the first bunch has already been presented and taken and the output position is empty, this command moves the next bunch to the output position before opening the shutter . This does not apply if the output position is not empty, for example if items had been re-inserted or dropped back into the output position as the shutter closed.

Events
Addition/modification to list of events which can be generated.

Value
Meaning

WFS_SRVE_CIM_ITEMSTAKEN
Either tThe items are available to the user or have been removed by the user, depending on the capability of the CIM. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.
Clarifications for WFS_CMD_CIM_SET_CASH_UNIT_INFO

Description
Change to description:

This command is used to adjust information about the status and contents of the cash units present in the CIM.

This command generates the service event WFS_SRVE_CIM_CASHUNITINFOCHANGED to inform applications that cash unit information has been changed.

This command can only be used to change software counters, thresholds and the application lock. All other fields in the input structure will be ignored.

The following fields of the WFSCIMCASHIN structure may be updated by this command:

ulCount

ulCashInCount

ulMaximum

bAppLock

lpNoteNumberList (contents must be consistent with ulCount)

As may the following fields of the WFSCIMPHCU structure:
ulCashInCount

ulCount

Any other changes must be performed via an exchange operation.

The lppPhysical counts must be consistent with the logical cash unit counts. The Service Provider controls whether the logical counts are maintained separately or are based on the sum of the physical counts.

Input Param
The referenced input parameter type has been corrected to refer to LPWFSCIMCASHINFO and the description updated:

Input Param
LPWFSCIMCASHINFO
lpCUInfo;
The LPWFSCIMCASHINFO structure is specified in the documentation for the WFS_INF_CIM_CASH_UNIT_INFO command. This pointer can be NULL, if the cash unit information has not changed. Otherwise the parameter must contain the complete list of cash unit structures not just the ones that have changed.
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_CIM_INVALIDTELLERID
Invalid Teller ID.

Clarifications for WFS_CMD_CIM_START_EXCHANGE

Description
Change to description:

This command puts the CIM in an exchange state, i.e. a state in which cash units can be emptied, replenished, removed or replaced. Other than the updates which can be made via the WFS_CMD_CIM_SET_CASH_UNIT_INFO command all changes to a cash unit must take place while the cash unit is in an exchange state.

In the case of self-configuring cash units which are designed to be replaced with no operator intervention the application should use some trigger to initiate an exchange state when appropriate. For instance, the WFS_SRVE_SAFE_DOOR_OPEN event could trigger the application to call WFS_CMD_CIM_START_EXCHANGE.

The command returns current cash unit information in the form described in the documentation of the WFS_INF_CIM_CASH_UNIT_INFO command. This command will also initiate any physical processes which may be necessary to make the cash units accessible. Before using this command an application should first have obtained exclusive control of the CIM.

This command may return WFS_SUCCESS even if WFS_EXEE_CIM_CASHUNITERROR events are generated. If this command returns WFS_SUCCESS or WFS_ERR_CIM_EXCHANGE_ACTIVE the CIM is in an exchange state.

Once in an exchange state the CIM will only respond to the following commands:
While in an exchange state the CIM will process all WFS requests, excluding WFS[Async]Execute commands other than WFS_CMD_CIM_END_EXCHANGE.

symbol 183 \f "Symbol" \s 10 \h
WFS_CMD_CIM_END_EXCHANGE

symbol 183 \f "Symbol" \s 10 \h
Any WFS[Async]GetInfo commands

symbol 183 \f "Symbol" \s 10 \h
WFSClose – this will end the exchange state

Any other WFS[Async]Execute commands will result in the error WFS_ERR_CDM_EXCHANGEACTIVE being generated

…

In the case of a recycler, the cash-in cash unit counts are set via the CIM interface and the cash-out cash unit counts are set via the CDM interface. Recycling cash units can be set via either interface. However, if the device has recycle units of multiple currencies and/or denominations (including multiple note identifiers associated with the same denomination), then the CIM interface should be used for exchange operations involving these cash units. Those fields which are not common to both the CDM and CIM cash units are left unchanged when an exchange (or WFS_CMD_XXX_SET_CASH_UNIT_INFO) is executed on the other interface. For example, if the CDM interface is used to set the current count of notes in the cash unit the CIM lpNoteNumberList structure is not changed even if the data becomes inconsistent.
Input Param
fwExchangeType
Specifies the type of the cash unit exchange operation. This field should be set to one of the following values:

Value
Meaning

WFS_CIM_EXTOCASSETTES
Change to description: Items will be moved from the bill cash units to the replenishment container. On a recycler, the CDM interface should be used to move items from a replenishment container.
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command.

Value
Meaning

WFS_EXEE_CIM_CASHUNITERROR
An error occurred while performing the exchange operation. A cash unit caused an error.

Clarifications for WFS_CMD_CIM_END_EXCHANGE

Description
Change to description:

This command will end the exchange state. If any physical action took place as a result of the WFS_CMD_CIM_START_EXCHANGE command then this command will cause the cash units to be returned to their normal physical state. Any necessary device testing will also be initiated. The application can also use this command to update cash unit information in the form described in the documentation of the WFS_INF_CIM_CASH_UNIT_INFO command.

The input parameters to this command may be ignored if the service provider can obtain cash unit information from self-configuring cash units.

Addition to description: The lppPhysical counts must be consistent with the logical cash unit counts. The Service Provider controls whether the logical counts are maintained separately or are based on the sum of the physical counts.

If an error occurs during the execution of this command, then the application must issue a WFS_INF_CIM_CASH_UNIT_INFO to determine the cash unit information.

A WFS_EXEE_CIM_CASHUNITERROR event will be sent for any logical cash unit which cannot be successfully updated. If no cash units could be updated then a WFS_ERR_CIM_CASHUNITERROR code will be returned and WFS_EXEE_CIM_CASHUNITERROR events generated for every logical cash unit that could not be updated.

Even if this command does not return WFS_SUCCESS the exchange state has ended.

Input Param
LPWFSCIMCASHINFO
lpCUInfo;
The LPWFSCIMCASHINFO structure is specified in the documentation for the WFS_INF_CIM_CASH_UNIT_INFO command. This pointer can be NULL, if the cash unit information has not changed. Otherwise the parameter If this parameter is not NULL then it must contain the complete list of cash unit structures not just the ones that have changed. If this parameter is NULL then any cash unit in a manipulated state (i.e. usPStatus value of WFS_CIM_STATCUMANIP) will remain in this state after the command completes.

The usStatus and usPStatus values passed in the cash unit structures included within the lpCUInfo parameter are ignored and the actual status of the cash units is determined when this command is executed. When lpCUInfo is not NULL and this command is successfully executed. cash units will no longer be in a manipulated state (i.e. usPStatus will no longer be WFS_CIM_STATCUMANIP).

Error Codes
Description of WFS_ERR_CIM_CASHUNITERROR changed to read:
Value
Meaning

WFS_ERR_CIM_INVALIDTELLERID
Invalid Teller ID. This error will never be generated by a Self-Service CIM.

WFS_ERR_CIM_CASHUNITERROR
Change to description: This error is returned if there is a problem with the values set for a cash unit. A cash unit problem occurred that meant no cash units could be updated. One or more WFS_EXEE_CIM_CASHUNITERROR events will be sent with the details.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_EXEE_CIM_CASHUNITERROR
The values of the cash unit structures are incorrect. The cash unit structure that is incorrect is returned as a parameter on this event. A cash unit caused an error.

Clarifications for WFS_CMD_CIM_RETRACT

Description
This command retracts items from an output position. Retracted items will be moved to either a retract bin, cash-in/recycle cash units, the transport or an intermediate stacker area. After the items are retracted the shutter is closed automatically.

Clarifications for WFS_CMD_CIM_RESET

Input Param
LPWFSCIMITEMPOSITION
lpResetIn;

usNumber

The usNumber of the cash unit to which items which were inside the CIM when the reset was issued should be moved. If the items should be moved to an output position or if lpRetractArea indicates WFS_CIM_RA_BILLCASSETTES this value is zero.

lpRetractArea

This field is only used if the cash unit specified by usNumber is a retract cash unit or items are to be moved to cash units (lpRetractArea indicates WFS_CIM_RA_BILLCASSETTES). In all other cases this field is set to 0. For a description of this structure see the WFSCIMRETRACT structure defined in Fehler! Verweisquelle konnte nicht gefunden werden..

fwOutputPosition

The output position to which items are to be moved. If the usNumber is non-zero or if lpRetractArea indicates WFS_CIM_RA_BILLCASSETTES then this field will be zero. The value is set to one of the following values:

…

If the application does not wish to specify a cash unit or position it can set this value lpResetIn to NULL. In this case the service provider will determine where to move any items found.

Description
Change to description:
This command is used by the application to perform a hardware reset which will attempt to return the CIM device to a known good state. This command does not over-ride a lock obtained on another application or service handle nor can it be performed while the CIM is in the exchange state. This command is not accepted during a cash in transaction and will return a WFS_ERR_CIM_CASHINACTIVE error. This command does not end a cash in transaction, the CIM remains in the cash in state.

Persistent values, such as counts and configuration information are not cleared by this command.

The device will attempt to move any items found to the cash unit or output position specified in the lpResetIn parameter. This may not always be possible because of hardware problems.

If items are found inside the device, one or more WFS_SRVE_CIM_MEDIADETECTED events will be generated to inform the application where the items have actually been moved.

The bShutterControl field of the LPWFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly control the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE then this command operates the shutter as necessary so that the shutter is closed after the command completes successfully and any items returned to the customer have been removed.

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

…
…

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the Capabilities information is TRUE.

Clarifications for WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS

Description
This command is used to alter the banknote types a cash in unit or recycle unit can take. The Non recycling cash units which are affected by this command must be empty. On some devices recycling cash units do not need to be empty.
Input Param
LPWFSCIMCASHINTYPE *
lppCashInType;

dwType
Type of cash in unit or recycle unit. Specified as one a combination of the following flags:

Value
Meaning

WFS_CIM_CITYPALL
The cash in unit accepts all fit banknote types.

WFS_CIM_CITYPUNFIT
The cash in unit accepts all unfit banknotes.

WFS_CIM_CITYPINDIVIDUAL
The cash in unit or recycle unit accepts all types of fit bank notes specified in the following list.

WFS_CIM_CITYPLEVEL2
All Paragraph 6 level 2 note types are stored in this cash in unit

WFS_CIM_CITYPLEVEL3
All Paragraph 6 level 3 note types are stored in this cash in unit

See WFS_CMD_CIM_CASH_UNIT_INFO command for a detailed description.

lpusNoteIDs
Pointer to a NULL zero terminated list of unsigned shorts which contains the note IDs of the bank notes the cash in cash unit or recycle unit can take. This field only applies if the dwType field has the WFS_CIM_CITYPINDIVIDUAL flag set.

Clarifications for WFS_CMD_CIM_CONFIGURE_NOTETYPES

Description
This command is used to configure the note types the banknote reader will recognise during cash in. All note types the banknote reader has to recognise must be given in the input structure. If an unknown note type is given the error code WFS_ERR_UNSUPPORTED_DATA will be returned.

Input Param
LPUSHORT
lpusNoteIDs;

lpusNoteIDs
Pointer to a NULL zero terminated list of unsigned shorts which contains the note IDs of the bank notes the banknote reader can accept.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:
Value
Meaning

WFS_ERR_CIM_CASHINACTIVE

A Cash-In transaction is active.

Clarifications for WFS_CMD_CIM_CREATE_P6_SIGNATURE

Description
This command is used to create a reference signature (normally a level 3 note) that was checked and regarded as a forgery. The reference can be compared with the available signatures of the cash in transactions to track back the customer.

When this command is executed, the CIM waits for a note to be inserted at the input position, transports the note to the recognition module, creates the signature and then returns the note to the output position.

The bShutterControl field of the LPWFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly control the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE then this command opens and closes the shutter at various times during the command execution and the shutter is finally closed at when all items are removed.

The application may have to execute this command repeatedly to make sure that all possible signatures are captured. If no recognition software is loaded into the recognition module usNoteId will be zero. If the note is not transported to the recognition module (e.g. bad transport out of input position) a NULL pointer is returned.
If a single note is entered and returned to the customer but cannot be processed fully (e.g. no recognition software in the recognition module, the note is not recognised, etc.) then an WFS_EXEE_CIM_INPUTREFUSE event will be generated and the command will complete with WFS_SUCESS. In this case, the output parameters will be set as follows, usNoteID = 0, ulLength = 0, dwOrientation = WFS_CIM_ORUNKNOWN and lpSignature = NULL.
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the user to be taken output position.

WFS_EXEE_CIM_NOTEERROR
A note detection error occurred.

Clarifications for WFS_USRE_CIM_CASHUNITTHRESHOLD
Description
This user event specifies that a threshold condition has occurred in one of the cash units or the threshold condition is removed. If the cash unit is a shared cash unit in a compound CDM and CIM device then this event can also be generated as a result of a CDM operation.
Clarifications for WFS_SRVE_CIM_CASHUNITINFOCHANGED
Description
This service event specifies that a cash unit has changed in configuration. A physical cash unit may have been removed or inserted or a cash unit parameter may have changed. This event will also be posted on successful completion of the following commands:

WFS_CMD_CIM_SET_CASH_UNIT_INFO

WFS_CMD_CIM_END_EXCHANGE

If the cash unit is a shared cash unit in a compound CDM and CIM device then this event can also be generated as a result of a CDM operation.
Clarifications for WFS_EXEE_CIM_CASHUNITERROR
Description
This execute event specifies that in a denominate or dispense command a cash unit was addressed which caused a problem.

Event Param
wFailure
Specifies the kind of failure that occurred in the cash unit. Values are:

Value
Meaning

WFS_CIM_CASHUNITEMPTY
Specified cash unit is empty.

WFS_CIM_CASHUNITERROR
Specified cash unit has malfunctioned.

WFS_CIM_CASHUNITFULL
Specified cash unit is full.

WFS_CIM_CASHUNITLOCKED
Specified cash unit is locked.

WFS_CIM_CASHUNITNOTCONF
Specified cash unit is not configured due to being removed and/or replaced with a different cash unit.

WFS_CIM_CASHUNITINVALID
Specified cash unit ID is invalid.

WFS_CIM_CASHUNITCONFIG
Attempt to change the setting of a self-configuring cash unit.

WFS_CIM_FEEDMODULEPROBLEM
A problem has been detected with the feeding module.

Clarifications for WFS_SRVE_CIM_ITEMSTAKEN
Description
This service event specifies that items presented to the user have been taken. This event may be generated at any time.
Event Param
None.

Comments
None.

Clarifications for WFS_SRVE_CIM_COUNTS_CHANGED
Description
This service event is generated if the device is a compound device together with a CDM and the counts in a shared cash unit have changed as a result of a any CDM operation other than WFS_CMD_CDM_SET_CASH_UNIT_INFO and WFS_CMD_CDM_END_EXCHANGE.

Clarifications for WFS_EXEE_CIM_INPUTREFUSE
Description
This execute event specifies that the device has refused either a portion or the entire amount of the cash in order.

Event Param
LPUSHORT
lpusReason;

lpusReason
Specifies the reason for refusing a part of the amount. Possible values are:

Value
Meaning

WFS_CIM_NOBILLSTODEPOSIT
There are no bills items in the input area.

Clarifications for WFS_SRVE_CIM_ITEMSPRESENTED
Description
Change to description:

This service event specifies that items have been presented to the user and need to be taken output position, and the shutter has been opened to allow the items to be taken.
Clarifications for WFS_SRVE_CIM_ITEMSINSERTED
Description
This service event specifies that items have been inserted into the cash in position by the user. This event may be generated at any time.
Event Param
None.

Comments
None.

Clarifications for WFS_EXEE_CIM_NOTEERROR
Description
This execute event specifies the reason for a notes detection error during an operation which involves moving notes.

Event Param
LPUSHORT
lpusReason;

lpusReason
Specifies the reason for the notes detection error. Possible values are:

Value
Meaning

WFS_CIM_INCORRECTCOUNT
A bill An item counting error has occurred.

WFS_CIM_OTHERNOTEERROR
A note An item error not covered by the other values has been detected.

Clarifications for WFS_EXEE_CIM_INPUT_P6

Description
This execute event is generated if level 2 and / or level 3 notes are detected during the cash in processing operation (WFS_CMD_CIM_CASH_IN).

ATM Cash In Transaction Flow – Application Guidelines

The following table is a summary of the application flows required given the possible values for the bShutterControl and bItemsTakenSensor for a successful cash in transaction.

	
	bItemsInsertedSensor==TRUE
	bItemsInsertedSensor==FALSE

	bShutterControl == TRUE
	WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM _CASH_IN
(InsertedEvent generated)

WFS_CMD_CIM _CASH_IN_END
	WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_CASH_IN

WFS_CMD_CIM_CASH_IN_END

	bShutterControl ==FALSE
	WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER

InsertedEvent generated

WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN

WFS_CMD_CIM_CASH_IN_END
	WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER

User Input

WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN

WFS_CMD_CIM_CASH_IN_END

The following sections describe the flow of a cash-in transaction on a Self Service CIM. These application flows are provided as guidelines only..

OK Transaction (Explicit Shutter Control)

The following table describes a normal cash-in transaction flow where everything works and the shutter is explicitly controlled by the application. This flow covers the following cases

· bShutterControl==FALSE & bItemsInsertedSensor == TRUE

· bShutterControl==FALSE & bItemsInsertedSensor == FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.
	Customer selects Cash In operation.
	
	WFS_CMD_CIM_CASH_IN_START

	2.
	
	Open the shutter of the input tray
	WFS_CMD_CIM_OPEN_SHUTTER

	3.
	
	Ask the customer to insert money
	

	4.
	Customer inserts money
	
	

	5.
	If bItemsInsertedSensor == FALSE, confirm completion
	
	If bItemsInsertedSensor== TRUE, WFS_SRVE_CIM_ITEMSINSERTED

	6.
	
	Close Shutter
	WFS_CMD_CIM_CLOSE_SHUTTER

	7.
	
	
	WFS_CMD_CIM_CASH_IN

completion of WFS_CMD_CIM_CASH_IN

	8.
	
	Display the number of bills and/or amount recognized so far
	

	9.
	
	Ask the customer for further actions:

If they want to insert more money:

Repeat from 2.

If they want to finish the transaction:

Continue with 10.

If they want to get back all items inserted so far see table "Cancellation by Customer (Explicit Shutter Control)"
	

	10.
	
	Transport the money into the cash units (RECYCLE_UNIT /CASHINBOX)
	WFS_CMD_CIM_CASH_IN_END

	11.
	
	Credit the money to the customers account
	

	12.
	
	End of Transaction
	

Cancellation by Customer (Explicit Shutter Control)

The following table describes the flow of a cash-in transaction where the customer wants all the items to be returned after recognition. This flow covers the following cases:

· bShutterControl==FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==TRUE.

· bShutterControl==FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor==TRUE

· bShutterControl==FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==FALSE

· bShutterControl==FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor==FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.-9.
	See OK Transaction (Explicit Shutter Control)
	
	

	10.
	Selection : Return all the items
	
	

	
	
	Transport the items recognized to the output position
	WFS_CMD_CIM_CASH_IN_ROLLBACK

	11.
	
	Open Shutter
	WFS_CMD_CIM_OPEN_SHUTTER

	
	
	Request removal of the money.
	

	
	Customer takes the money from the output position
	
	

	12.
	If bItemsTakenSensor == FALSE, confirm completion or use application timeout
	
	If bItemsTakenSensor== TRUE WFS_SRVE_CIM_ITEMSTAKEN

	13.
	
	Close Shutter
	WFS_CMD_CIM_CLOSE_SHUTTER

	14.
	
	End of Transaction
	

Stacker becomes full (Explicit Shutter Control)

The following table describes the flow of a cash-in transaction when the stacker becomes full during the transaction and the shutter is explicitly controlled by the application. This flow covers the following cases:

· bShutterControl==FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==TRUE.

· bShutterControl==FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor==TRUE

· bShutterControl==FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==FALSE

· bShutterControl==FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor==FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.-6.
	See OK Transaction (Explicit Shutter Control)
	
	

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE (StackerFull)
and

WFS_CMD_CIM_CASH_IN completes with WFS_SUCCESS and WFS_EXEE_CIM_INPUTREFUSE (StackerFull)
WFS_SRVE_CIM_ITEMSPRESENTED

	8.
	
	Open Shutter
	WFS_CMD_CIM_OPEN_SHUTTER

	9.
	
	Ask the customer to remove the excess money.
	

	10.
	Customer removes excess money
	
	

	11.
	If bItemsTakenSensor == FALSE Confirm Completion or use application timeout
	
	If bItemsTakenSensor == TRUE WFS_SRVE_CIM_ITEMSTAKEN

	12.
	
	Close Shutter
	WFS_CMD_CIM_CLOSE_SHUTTER

	13.
	
	Display the amount recognized so far and tell the customer that the stacker is full
	

	14.
	
	Ask the customer for further actions:

If they want to deposit the amount:

Continue with 15.

If they want to get back all items inserted so far see table "Cancellation by Customer (Explicit Shutter Control)"
	

	15.
	
	Transport the money into the cash units (RECYCLE_UNIT /CASHINBOX)
	WFS_CMD_CIM_CASH_IN_END

	16.
	
	Ask the customer if they want to deposit more money.

If they want to deposit more:

Repeat from 1.

If they want to finish the transaction:

Continue with 17.
	

	17.
	
	Credit the money to the customers account
	

	18.
	
	End of Transaction
	

Bill recognition error (Explicit Shutter Control)

following table describes the flow of a cash-in transaction when the items are rejected as unrecognized during the transaction and the shutter is explicitly controlled by the application

. This flow covers the following cases:

· bShutterControl==FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==TRUE.

· bShutterControl==FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor==TRUE

· bShutterControl==FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==FALSE

· bShutterControl==FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor==FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.-6.
	See OK Transaction (Explicit Shutter Control)
	
	

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE (InvalidBill)
and

Completion of WFS_CMD_CIM_CASH_IN with WFS_SUCCESS and WFS_EXEE_CIM_INPUTREFUSE (InvalidBill)
WFS_SRVE_CIM_ITEMSPRESENTED

	8.
	
	Open Shutter
	WFS_CMD_CIM_OPEN_SHUTTER

	9.
	
	Tell the customer that the bills were not recognized and that he should take the bills.
	

	10.
	Customer removes unrecognized money
	
	

	11.
	If bItemsTakenSensor == FALSE, confirm completion or use application timeout
	
	If bItemsTakenSensor == TRUE WFS_SRVE_CIM_ITEMSTAKEN

	12.
	
	Close Shutter
	WFS_CMD_CIM_CLOSE_SHUTTER

	13.
	
	Display the amount recognized so far
	

	14.
	
	Ask the customer for further actions:

If they want to deposit the amount:

Continue with 15.

If they want to get back all items inserted so far see table "Cancellation by Customer (Explicit Shutter Control)"
	

	15.
	
	Transport the money into the cash units (RECYCLE_UNIT /CASHINBOX)
	WFS_CMD_CIM_CASH_IN_END

	16.
	
	Credit the money to the customers account
	

	17.
	
	End of Transaction
	

OK Transaction (Implicit Shutter Control)

The following table describes a normal cash-in transaction flow where everything works and the shutter is implicitly controlled by the service provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not explicitly used by the application. This flow covers the following cases:

· bShutterControl==TRUE, & bItemsInsertedSensor == TRUE

· bShutterControl==TRUE, & bItemsInsertedSensor == FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.
	Customer selects Cash In operation.
	
	WFS_CMD_CIM_CASH_IN_START

	2.
	
	
	WFS_CMD_CIM_CASH_IN (service provider opens the input shutter).

	3.
	
	Ask the customer to insert money.
	

	4.
	Customer inserts money.
	
	

	5.
	
	
	If bItemsInsertedSensor == TRUE

WFS_SRVE_CIM_ITEMSINSERTED

	6.
	
	
	The service provider closes the input shutter begins bill recognition.

The WFS_CMD_CIM_CASH_IN command completes.

	7.
	
	Display the number of bills and/or amount recognized so far.
	

	8.
	
	Ask the customer for further actions:

If they want to insert more money:

Repeat from 2.

If they want to finish the transaction:

Continue with 9.

If they want to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	9.
	
	Transport the money into the cash units (RECYCLE_UNIT /CASHINBOX)
	WFS_CMD_CIM_CASH_IN_END

	10.
	
	Credit the money to the customers account
	

	11.
	
	End of Transaction
	

Cancellation by Customer (Implicit Shutter Control)

The following table describes the flow of a cash-in transaction where the customer wants all the items to be returned after recognition and the shutter is implicitly controlled by the service provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used.

This flow covers the following cases:

bShutterControl==TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==TRUE

bShutterControl==TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor==FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.-9.
	See OK Transaction
	
	

	10.
	Selection : Return all the items
	
	

	11.
	
	Transport the items recognized to the output position
	WFS_CMD_CIM_CASH_IN_ROLLBACK.

	12.
	
	Request removal of the money.
	

	13.
	Customer takes the money from the output position
	
	

	14.
	If bItemsTakenSensor == FALSE, confirm completion or use application timeout
	
	If bItemsTakenSensor == TRUE

WFS_SRVE_CIM_ITEMSTAKEN.
The Service Provider closes the Shutter.

	15.
	
	End of transaction.
	

Implicit Control Of the Shutter – WFS_EXEE_CIM_SUBCASHIN event

The following table describes the chronological steps taken in the flow of a Cash In transaction where the Cash In operation is subdivided into a number of logical operations under hardware control, in this case a WFS_EXEE_CIM_SUBCASHIN event is generated for each sub Cash In operation. This may be the case for instance where a device does its coin or bill recognition in batches of 25, in this case the Service Provider would post a WFS_EXEE_CIM_SUBCASHIN event each time 25 coins were processed. In this example the shutter is implicitly controlled by the Service Provider so the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used.

This flow covers the following cases:

· bShutterControl==TRUE, & bItemsInsertedSensor == TRUE

· bShutterControl==TRUE, & bItemsInsertedSensor == FALSE

	
	Customer
	Application
	XFS Commands and Events

	1.-6.
	See OK Transaction
	
	

	7.
	
	
	The device processes the bills or coins in batches. Each time a batch is completed a WFS_EXEE_CIM_SUBCASHIN event is posted then the Cash In operation continues.

	8.
	
	
	The WFS_CMD_CIM_CASH_IN command completes.

	9.
	
	Display the number of bills and/or amount recognized so far.
	

	10.
	
	Ask the customer for further actions:

If he wants to insert more money:

Repeat from 2.

If he wants to finish the transaction:

Continue with 11.

If he wants to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	11.
	
	
	WFS_CMD_CIM_CASH_IN_END

	12.
	
	End of transaction.
	

Multiple Refused Notes (Implicit Shutter Control)

The following table describes the flow of a cash-in transaction where items are rejected during the transaction and the service provider implicitly controls the shutter. In this case the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used. Additionally, the number of items refused may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, control of the shutter must be implicit. Therefore, there is no corresponding flow for explicit shutter control.

	
	Customer
	Application
	XFS Command

	1.-5.
	See OK Transaction (Implicit Shutter Control)
	
	

	6.
	
	
	The service provider implicitly closes the input shutter and begins bill recognition. As a result of the note processing n batches of notes must be returned to the customer.

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE

	8.
	
	
	Return Batch 1 of notes to customer. The SP implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	9.
	
	Tell the customer that the bills were not accepted, and to take the bills.
	

	10.
	Customer removes unrecognized money.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The SP implicitly closes the shutter.

	11.
	
	
	Repeat steps 11 through 13 until batches 2 to n-1 are returned to the cuitomer

The SP implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	12.
	
	Tell the customer to take the bills
	

	13.
	Customer removes unrecognized money.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The SP implicitly closes the shutter.

	14.
	
	
	Return Batch n (last) of notes to customer

The SP implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	15.
	
	
	Completion of WFS_CMD_CIM_CASH_IN with WFS_SUCCESS

	16.
	
	Tell the customer to take the bills.
	

	17.
	Customer removes unrecognized money.
	
	

	18.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The service provider implicitly closes the shutter.

	19.
	
	Display the amount recognized so far
	

	20.
	
	Ask the customer for further actions:

If they want to deposit the amount:

Continue with 21.

If they want to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	21.
	
	Transport the money into the cash units (RECYCLE_UNIT / CASHINBOX)
	WFS_CMD_CIM_CASH_IN_END

	22.
	
	Credit the money to the customers account
	

	23.
	
	End of Transaction
	

Multiple Rollback Notes (Implicit Shutter Control)

The following table describes the flow of a Rollback operation where items are rolled back during the transaction and the service provider implicitly controls the shutter. In this case the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used. Additionally, the number of items rolled back may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, control of the shutter must be implicit. Therefore, there is no corresponding flow for explicit shutter control.

	
	Customer
	Application
	XFS Command

	1.-10.
	See OK Transaction (Implicit Shutter Control)
	
	

	
	
	Initiate the rollback operation.
	WFS_CMD_CIM_CASH_IN_ROLLBACK

	11
	
	
	As a result of this n batches of notes must be returned to the customer.

	12
	
	
	Return Batch of notes to customer. The SP implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	13
	
	Tell the customer to take the bills.
	

	14.
	Customer removes money.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The SP implicitly closes the shutter.

	15.
	
	
	Repeat steps 12 through 14 until batches 2 to n-1 are returned to the customer

	
	
	
	

	
	
	
	

	16.
	
	
	Return Batch n (last) of notes to customer

The SP implicitly opens the shutter.

WFS_SRVE_CIM_ITEMSPRESENTED

	17.
	
	
	Completion of WFS_CMD_CIM_CASH_IN_ROLLBACK with WFS_SUCCESS

	18.
	
	Tell the customer to take the bills.
	

	19.
	Customer removes money.
	
	

	20.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The service provider implicitly closes the shutter.

	21.
	
	End of transaction
	

Rules for Cash Unit Exchange

…

If a cash unit is removed from the CIM outside of the Start/End Exchange operations and subsequently reinserted, the status of the physical cash unit should be set to WFS_CIM_STATCUMANIP to indicate to the application that the physical cash unit has been removed, reinserted and possibly tampered with. While the cash unit has this status the Service Provider should not attempt to use it as part of a Dispense deposit operation. The WFS_CIM_STATCUMANIP status should not change until the next Start/End Exchange operation is performed, even if the cash unit is replaced in its original position.

 VDM Entry Request

XFS Compliant

VDM Control

Application

XFS

Compliant

Application

XFS

Compliant

Application

XFS

Compliant

Application

CMD_ENTER_MODE_ REQ

SRVE_ENTER_MODE_REQ

SYSE_MODEENTERRED

CMD_ENTER_MODE_ACK

 	t0	t1	t2	t3	t4	t5	t6	t7

time

VDM SERVICE PROVIDER

SYSTEM

DEVICES

under

Vendor Dependent

control at t > t7

XFS Compliant

Application

 XFS

Compliant

Application

XFS

Compliant

Application

SRVE_ENTER_MODE_REQ

SYSE_MODEENTERRED

CMD_ENTER_MODE_ACK

 	t0	t1	t2	t3	t4	t5

time

VDM SERVICE PROVIDER

VDM Entry Request

SYSTEM

 DEVICES

under

Vendor Dependent

control at t > t5

 VDM Exit Request

XFS Compliant

VDM Control

Application

XFS

Compliant

Application

XFS

Compliant

Application

XFS

Compliant

Application

CMD_EXIT_MODE_ REQ

SRVE_EXIT_MODE_REQ

SYSE_MODEEXITED

CMD_EXIT_MODE_ACK

	t0	t1	t2	t3 t4 t5 t6	t7

time

VDM SERVICE PROVIDER

SYSTEM

DEVICES

under

CEN/XFS

control at t > t7

XFS Compliant

Application

 XFS

Compliant

Application

XFS

Compliant

Application

SRVE_EXIT_MODE_REQ

SYSE_MODEEXITED

CMD_EXIT_MODE_ACK

 	t0		t1	t2 t3 t4				t5

time

VDM SERVICE PROVIDER

VDM Exit Request

 SYSTEM

 DEVICES

under

CEN/XFS

control at t > t5

� Attributes are not required in any mandatory order.

page
- 7 of 96 -

_1122201429.vsd
SOFTWARE�

XFS�

HKEY_LOCAL_MACHINE�

XFS_MANAGER�

SERVICE_PROVIDERS�

PHYSICAL_SERVICES�

XFS
 Info 1�

XFS
 Info N�

SP
Info 1�

SP
Info N�

PS
Info 1�

PS
Info N�

MANAGEMENT_PROVIDERS�

MP
Info 1�

MP
Info N�

